滑石
煅烧
肥料
材料科学
热重分析
差示扫描量热法
化学工程
傅里叶变换红外光谱
氧化钙
矿物学
扫描电子显微镜
硅
碳酸钙
核化学
冶金
化学
复合材料
有机化学
催化作用
工程类
物理
热力学
作者
Yian Wang,Jie Zhang,Junjian Zheng,Hua Lin,Gongning Chen,Chao Wang,Kong Chhuon,Zhonghua Wei,Chengfenghe Jin,Xuehong Zhang
出处
期刊:Molecules
[MDPI AG]
日期:2021-07-26
卷期号:26 (15): 4493-4493
被引量:2
标识
DOI:10.3390/molecules26154493
摘要
The deficiency of available silicon (Si) incurred by year-round agricultural and horticultural practices highlights the significance of Si fertilization for soil replenishment. This study focuses on a novel and economical route for the synthesis of Si fertilizer via the calcination method using talc and calcium carbonate (CaCO3) as starting materials. The molar ratio of talc to CaCO3 of 1:2.0, calcination temperature of 1150 °C and calcination time of 120 min were identified as the optimal conditions to maximize the available Si content of the prepared Si fertilizer. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) characterizations elucidate the principles of the calcination temperature-dependent microstructure evolution of Si fertilizers, and the akermanite Ca2Mg(Si2O7) and merwinite Ca3Mg(SiO4)2 were identified as the primary silicates products. The results of release and solubility experiments suggest the content of available metallic element and slow-release property of the Si fertilizer obtained at the optimum preparation condition (Si-OPC). The surface morphology and properties of Si-OPC were illuminated by the results of scanning electron microscope (SEM), surface area and nitrogen adsorption analysis. The acceleration action of CaCO3 in the decomposition process of talc was demonstrated by the thermogravimetry-differential scanning calorimetry (TG-DSC) test. The pot experiment corroborates that 5 g kg−1 soil Si-OPC application sufficed to facilitate the pakchoi growth by providing nutrient elements. This evidence indicates the prepared Si fertilizer as a promising candidate for Si-deficient soil replenishment.
科研通智能强力驱动
Strongly Powered by AbleSci AI