Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from pure water

材料科学 微晶 高分辨率透射电子显微镜 催化作用 Crystal(编程语言) 制氢 单晶 兴奋剂 光致发光 离解(化学) 结晶学 透射电子显微镜 化学工程 分析化学(期刊) 纳米技术 物理化学 光电子学 化学 冶金 工程类 生物化学 有机化学 程序设计语言 色谱法 计算机科学
作者
Biao Wang,Qian Zhang,Jiaqing He,Feng Huang,Caifu Li,Mengye Wang
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:65: 304-311 被引量:41
标识
DOI:10.1016/j.jechem.2021.06.004
摘要

Piezocatalytic materials have been widely used for catalytic hydrogen evolution and purification of organic contaminants. However, most studies focus on nano-size and/or polycrystalline catalysts, suffering from aggregation and neutralization of internal piezoelectric field caused by polydomains. Here we report a single crystal ZnO of large size and few bulk defects crafted by a hydrothermal method for piezocatalytic hydrogen generation from pure water. It is noteworthy that single-side surface areas of both original as-prepared ZnO and Ga-doped ZnO bulk crystals are larger than 30 cm2. The high quality of ZnO and Ga-doped ZnO bulks are further uncovered by high-resolution transmission electron microscope (HRTEM), photoluminescence (PL) and X-ray diffraction (XRD). Remarkably, an outstanding hydrogen production rate of co-catalyst-free Ga-doped ZnO bulk crystal (i.e., a maximum rate of 5915 μmol h−1 m−2) is observed in pure water triggered by ultrasound in dark, which is over 100 times higher than that of its powder counterpart (i.e., 52.54 μmol h−1 m−2). The piezocatalytic performance of ZnO bulk crystal is systematically studied in terms of varied exposed crystal facet, thickness and conductivity. Different piezocatalytic performances are attributed to magnitude and distribution of piezoelectric potential, revealed by the finite element method (FEM) simulation. The density functional theory (DFT) calculations are employed to investigate the piezocatalytic hydrogen evolution process, indicating a strong H2O adsorption and a low energy barrier for both H2O dissociation and H2 generation on the stressed Zn-terminated (0001) ZnO surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
3秒前
3秒前
橘柚完成签到 ,获得积分10
4秒前
zmmmm发布了新的文献求助10
4秒前
领导范儿应助温言采纳,获得10
4秒前
思源应助OvO采纳,获得10
6秒前
迷糊发布了新的文献求助30
7秒前
LY发布了新的文献求助10
8秒前
zzz完成签到,获得积分10
8秒前
KimJongUn完成签到,获得积分10
8秒前
10秒前
10秒前
zy完成签到,获得积分10
11秒前
开心果子发布了新的文献求助10
11秒前
云痴子完成签到,获得积分10
12秒前
SciGPT应助粥粥采纳,获得10
12秒前
12秒前
12秒前
13秒前
苏源完成签到,获得积分10
13秒前
wu关闭了wu文献求助
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
15秒前
Shawn完成签到,获得积分10
16秒前
yltstt完成签到,获得积分10
17秒前
李小新发布了新的文献求助10
17秒前
成梦发布了新的文献求助10
18秒前
乐乐应助xuex1采纳,获得10
18秒前
蜂鸟5156发布了新的文献求助10
18秒前
李爱国应助VDC采纳,获得10
19秒前
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808