A Machine Learning Approach to Predict Acute Ischemic Stroke Thrombectomy Reperfusion using Discriminative MR Image Features

溶栓 医学 判别式 冲程(发动机) 队列 磁共振成像 脑梗塞 人工智能 放射科 机器学习 缺血 内科学 计算机科学 心肌梗塞 机械工程 工程类
作者
Haoyue Zhang,Jennifer Polson,Kambiz Nael,Noriko Salamon,Bryan Yoo,William Speier,Corey Arnold
标识
DOI:10.1109/bhi50953.2021.9508597
摘要

Mechanical thrombectomy (MTB) is one of the two standard treatment options for Acute Ischemic Stroke (AIS) patients. Current clinical guidelines instruct the use of pretreatment imaging to characterize a patient's cerebrovascular flow, as there are many factors that may underlie a patient's successful response to treatment. There is a critical need to leverage pretreatment imaging, taken at admission, to guide potential treatment avenues in an automated fashion. The aim of this study is to develop and validate a fully automated machine learning algorithm to predict the final modified thrombolysis in cerebral infarction (mTICI) score following MTB. A total 321 radiomics features were computed from segmented pretreatment MRI scans for 141 patients. Successful recanalization was defined as mTICI score >= 2c. Different feature selection methods and classification models were examined in this study. Our best performance model achieved 74.42±2.52% AUC, 75.56±4.44% sensitivity, and 76.75±4.55% specificity, showing a good prediction of reperfusion quality using pretreatment MRI. Results suggest that MR images can be informative to predicting patient response to MTB, and further validation with a larger cohort can determine the clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒飞丹应助路遥采纳,获得30
刚刚
乐乐应助all采纳,获得10
3秒前
3秒前
XIXIw发布了新的文献求助150
3秒前
水电费完成签到 ,获得积分10
4秒前
4秒前
神勇的幻竹完成签到,获得积分10
4秒前
4秒前
普萘洛尔发布了新的文献求助10
5秒前
小蘑菇应助疯狂的语兰采纳,获得10
6秒前
意而往南飞完成签到,获得积分10
6秒前
传奇3应助fzzf采纳,获得10
6秒前
夜月残阳完成签到,获得积分10
6秒前
sophie完成签到,获得积分10
7秒前
上官若男应助AiX-zzzzz采纳,获得10
7秒前
幸运星辰完成签到 ,获得积分10
8秒前
8秒前
明理开山完成签到,获得积分10
9秒前
9秒前
现代的访曼应助GCY采纳,获得20
9秒前
10秒前
Maxine完成签到 ,获得积分10
10秒前
10秒前
10秒前
wanci应助不爱吃苹果采纳,获得10
11秒前
11秒前
笨比小刘完成签到,获得积分10
12秒前
菜菜发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
Chanyl发布了新的文献求助10
15秒前
英俊的铭应助聪明宛菡采纳,获得10
15秒前
sophie发布了新的文献求助10
16秒前
16秒前
我是中国人完成签到,获得积分10
17秒前
17秒前
18秒前
852应助科视采纳,获得10
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956244
求助须知:如何正确求助?哪些是违规求助? 3502445
关于积分的说明 11107634
捐赠科研通 3233093
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802086