A Machine Learning Approach to Predict Acute Ischemic Stroke Thrombectomy Reperfusion using Discriminative MR Image Features

溶栓 医学 判别式 冲程(发动机) 队列 磁共振成像 脑梗塞 人工智能 放射科 机器学习 缺血 内科学 计算机科学 心肌梗塞 机械工程 工程类
作者
Haoyue Zhang,Jennifer Polson,Kambiz Nael,Noriko Salamon,Bryan Yoo,William Speier,Corey Arnold
标识
DOI:10.1109/bhi50953.2021.9508597
摘要

Mechanical thrombectomy (MTB) is one of the two standard treatment options for Acute Ischemic Stroke (AIS) patients. Current clinical guidelines instruct the use of pretreatment imaging to characterize a patient's cerebrovascular flow, as there are many factors that may underlie a patient's successful response to treatment. There is a critical need to leverage pretreatment imaging, taken at admission, to guide potential treatment avenues in an automated fashion. The aim of this study is to develop and validate a fully automated machine learning algorithm to predict the final modified thrombolysis in cerebral infarction (mTICI) score following MTB. A total 321 radiomics features were computed from segmented pretreatment MRI scans for 141 patients. Successful recanalization was defined as mTICI score >= 2c. Different feature selection methods and classification models were examined in this study. Our best performance model achieved 74.42±2.52% AUC, 75.56±4.44% sensitivity, and 76.75±4.55% specificity, showing a good prediction of reperfusion quality using pretreatment MRI. Results suggest that MR images can be informative to predicting patient response to MTB, and further validation with a larger cohort can determine the clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助King16采纳,获得10
刚刚
ycg完成签到,获得积分10
2秒前
6秒前
bathygobius完成签到,获得积分10
7秒前
hyhyhyhy发布了新的文献求助10
7秒前
7秒前
9秒前
冰狗发布了新的文献求助10
10秒前
等待的啤酒完成签到,获得积分10
11秒前
ming发布了新的文献求助10
11秒前
昭明完成签到,获得积分10
12秒前
Emma发布了新的文献求助10
13秒前
13秒前
谦让冰真完成签到 ,获得积分10
14秒前
赘婿应助zxced13采纳,获得10
15秒前
zjxhjj123发布了新的文献求助20
17秒前
Z1987完成签到,获得积分10
17秒前
kaiyongtang完成签到,获得积分10
17秒前
18秒前
19秒前
深情安青应助ming采纳,获得10
20秒前
20秒前
科研通AI2S应助赤侯采纳,获得10
22秒前
王同学完成签到,获得积分10
22秒前
23秒前
wshwx发布了新的文献求助10
24秒前
25秒前
ss应助闪闪的迎天采纳,获得30
25秒前
26秒前
28秒前
28秒前
28秒前
露露发布了新的文献求助10
29秒前
zc发布了新的文献求助10
29秒前
FUN发布了新的文献求助30
30秒前
王小小完成签到,获得积分10
30秒前
外向春天完成签到,获得积分10
31秒前
万能图书馆应助小太阳采纳,获得10
33秒前
hgy发布了新的文献求助10
33秒前
赘婿应助zc采纳,获得10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310243
求助须知:如何正确求助?哪些是违规求助? 2943212
关于积分的说明 8513174
捐赠科研通 2618448
什么是DOI,文献DOI怎么找? 1431076
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649542