A Multivariation Multifactorial Evolutionary Algorithm for Large-Scale Multiobjective Optimization

进化算法 数学优化 多目标优化 转化(遗传学) 计算机科学 最优化问题 集合(抽象数据类型) 空格(标点符号) 进化计算 比例(比率) 数学 局部搜索(优化) 算法 物理 操作系统 基因 量子力学 化学 程序设计语言 生物化学
作者
Yinglan Feng,Liang Feng,Sam Kwong,Kay Chen Tan
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (2): 248-262 被引量:37
标识
DOI:10.1109/tevc.2021.3119933
摘要

For solving large-scale multiobjective problems (LSMOPs), the transformation-based methods have shown promising search efficiency, which varies the original problem as a new simplified problem and performs the optimization in simplified spaces instead of the original problem space. Owing to the useful information provided by the simplified searching space, the performance of LSMOPs has been improved to some extent. However, it is worth noting that the original problem has changed after the variation, and there is thus no guarantee of the preservation of the original global or near-global optimum in the newly generated space. In this article, we propose to solve LSMOPs via a multivariation multifactorial evolutionary algorithm. In contrast to existing transformation-based methods, the proposed approach intends to conduct an evolutionary search on both the original space of the LSMOP and multiple simplified spaces constructed in a multivariation manner concurrently. In this way, useful traits found along the search can be seamlessly transferred from the simplified problem spaces to the original problem space toward efficient problem solving. Besides, since the evolutionary search is also performed in the original problem space, preserving the original global optimal solution can be guaranteed. To evaluate the performance of the proposed framework, comprehensive empirical studies are carried out on a set of LSMOPs with two to three objectives and 500–5000 variables. The experimental results highlight the efficiency and effectiveness of the proposed method compared to the state-of-the-art methods for large-scale multiobjective optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nuonuo发布了新的文献求助10
1秒前
chenxuuu完成签到,获得积分10
2秒前
Orange应助芳芳采纳,获得10
2秒前
2秒前
bkagyin应助wsc采纳,获得10
2秒前
123完成签到,获得积分10
3秒前
rayx3x应助华枝春满采纳,获得10
4秒前
5秒前
yee发布了新的文献求助10
6秒前
嘟嘟发布了新的文献求助10
7秒前
oth1k完成签到,获得积分20
7秒前
7秒前
oth1k发布了新的文献求助10
9秒前
达夫斯基完成签到,获得积分10
10秒前
Linden_bd完成签到 ,获得积分10
12秒前
13秒前
HaoyangP发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
16秒前
深情安青应助nuannuan采纳,获得20
16秒前
呆萌冰绿完成签到,获得积分10
16秒前
李大园子完成签到 ,获得积分10
16秒前
16秒前
华枝春满完成签到,获得积分10
17秒前
wuqilong完成签到,获得积分10
18秒前
dreamlightzy应助qmd采纳,获得10
18秒前
NewMoon完成签到,获得积分10
18秒前
FashionBoy应助嘟嘟采纳,获得10
18秒前
洁净的127完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
2339822272发布了新的文献求助10
21秒前
星星完成签到,获得积分10
21秒前
幸运兔发布了新的文献求助10
22秒前
上官若男应助wqx采纳,获得10
22秒前
月亮邮递员完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333