A Multivariation Multifactorial Evolutionary Algorithm for Large-Scale Multiobjective Optimization

进化算法 数学优化 多目标优化 转化(遗传学) 计算机科学 最优化问题 集合(抽象数据类型) 空格(标点符号) 进化计算 比例(比率) 数学 局部搜索(优化) 算法 物理 操作系统 基因 量子力学 化学 程序设计语言 生物化学
作者
Yinglan Feng,Liang Feng,Sam Kwong,Kay Chen Tan
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (2): 248-262 被引量:37
标识
DOI:10.1109/tevc.2021.3119933
摘要

For solving large-scale multiobjective problems (LSMOPs), the transformation-based methods have shown promising search efficiency, which varies the original problem as a new simplified problem and performs the optimization in simplified spaces instead of the original problem space. Owing to the useful information provided by the simplified searching space, the performance of LSMOPs has been improved to some extent. However, it is worth noting that the original problem has changed after the variation, and there is thus no guarantee of the preservation of the original global or near-global optimum in the newly generated space. In this article, we propose to solve LSMOPs via a multivariation multifactorial evolutionary algorithm. In contrast to existing transformation-based methods, the proposed approach intends to conduct an evolutionary search on both the original space of the LSMOP and multiple simplified spaces constructed in a multivariation manner concurrently. In this way, useful traits found along the search can be seamlessly transferred from the simplified problem spaces to the original problem space toward efficient problem solving. Besides, since the evolutionary search is also performed in the original problem space, preserving the original global optimal solution can be guaranteed. To evaluate the performance of the proposed framework, comprehensive empirical studies are carried out on a set of LSMOPs with two to three objectives and 500–5000 variables. The experimental results highlight the efficiency and effectiveness of the proposed method compared to the state-of-the-art methods for large-scale multiobjective optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
玥越完成签到,获得积分10
2秒前
dm11完成签到 ,获得积分10
3秒前
Akim应助靖123456采纳,获得10
4秒前
yizhe完成签到,获得积分10
4秒前
畅畅完成签到 ,获得积分10
4秒前
ChatGPT发布了新的文献求助10
5秒前
李健的小迷弟应助la采纳,获得10
5秒前
ZYN完成签到 ,获得积分10
6秒前
Mason完成签到,获得积分10
7秒前
yizhe发布了新的文献求助10
7秒前
JamesPei应助zzzz采纳,获得10
8秒前
英俊的铭应助aa采纳,获得30
8秒前
xiaohuhuan完成签到,获得积分10
8秒前
bulingbuling完成签到 ,获得积分10
9秒前
一颗小纽扣完成签到,获得积分10
10秒前
席涑完成签到,获得积分10
11秒前
CipherSage应助拼搏的婷冉采纳,获得10
11秒前
luoluo完成签到 ,获得积分10
12秒前
12秒前
醋炒栗子仁完成签到,获得积分10
12秒前
墨尔根戴青完成签到,获得积分10
13秒前
瑾瑜完成签到,获得积分10
14秒前
文小杰完成签到,获得积分10
14秒前
山月完成签到,获得积分10
15秒前
CodeCraft应助研友_LOK59L采纳,获得10
15秒前
15秒前
16秒前
欣慰妙海完成签到 ,获得积分20
16秒前
CodeCraft应助zhaopeipei采纳,获得10
16秒前
LIUYONG发布了新的文献求助10
17秒前
lin发布了新的文献求助10
19秒前
20秒前
九湖夷上完成签到 ,获得积分10
20秒前
噼里啪啦完成签到 ,获得积分10
21秒前
大个应助hahaha123213123采纳,获得30
21秒前
21秒前
惊天大幂幂完成签到,获得积分10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029