癌症研究
转移
结直肠癌
细胞迁移
生物
癌症
细胞生长
细胞
生物化学
遗传学
作者
Dragana Šeklić,Milena Jovanović,Katarina Virijević,Jelena Grujić,Marko Živanović,Snežana D. Marković
标识
DOI:10.1016/j.jep.2021.114758
摘要
Pseudevernia furfuracea (L.) Zopf is common lichen species, traditionally used worldwide in treating various medical conditions, among which are intestinal issues and cancer. Most studies are focused mainly on cytotoxic potential of lichens, whilst their antimigratory and antiinvasive properties are often disregarded. Migration and invasion of cancer cells are pivotal processes in cancer metastasis, wherein cancer cells are able to migrate individually or in form of a coherent mass. One of successful strategies in anticancer treatments is targeting Wnt/β-catenin signal pathway, that is aberrantly activated in colorectal carcinoma, as well as lowering level of migratory/invasive markers.Present study aimed to show antimigratory/invasive potential of Pseudevernia furfuracea methanol extract on HCT-116 and SW-480 colorectal carcinoma cell lines and to elucidate possible mechanism of its action.Collective cell migration was assessed by Wound healing assay and single cell migration in real time by RTCA method. Analysis of anti- and promigratory protein expression was performed using immunofluorescent staining. Additionally, gene expression of antimigratory/promigratory and invasive (E-cadherin, β-catenin, N-cadherin, Vimentin, Snail and MMP-9) markers were investigated by qRT-PCR method. Concentration of MMP-9 was determined colorimetrically by ELISA test.P. furfuracea extract was able to suppress both collective and single cancer cell migration, by inhibiting expression of promigratory/invasive markers and possibly re-establishing cell-cell adhesions. The present study indicates at P. furfuracea as effective antimigratory treatment, and HCT-116 cells were proved to be a more sensitive cell line to applied treatment.This lichen species is a promising candidate for application in treatment of cancer in order to prevent metastasis.
科研通智能强力驱动
Strongly Powered by AbleSci AI