Universal effective medium theory to predict the thermal conductivity in nanostructured materials

热导率 玻尔兹曼方程 平均自由程 纳米孔 材料科学 声子 多孔介质 工作(物理) 热的 多孔性 统计物理学 纳米结构 纳米技术 物理 凝聚态物理 散射 热力学 复合材料 光学
作者
S. Aria Hosseini,Sarah Khanniche,P. Alex Greaney,Giuseppe Romano
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:183: 122040-122040 被引量:9
标识
DOI:10.1016/j.ijheatmasstransfer.2021.122040
摘要

Nanostructured materials enable high thermal transport tunability, holding promises for thermal management and heat harvesting applications. Predicting the effect that nanostructuring has on thermal conductivity requires models, such as the Boltzmann transport equation (BTE), that capture the non-diffusive transport of phonons. Although the BTE has been well validated against several key experiments, notably those on nanoporous materials, its applicability is computationally expensive. Several effective model theories have been put forward to estimate the effective thermal conductivity; however, most of them are either based on simple geometries, e.g., thin films, or simplified material descriptions such as the gray-model approximation. To fill this gap, we propose a model that takes into account the whole mean-free-path (MFP) distribution as well as the complexity of the material’s boundaries in infinitely thick films with extruded porosity using uniparameter logistic regression. We validate our approach, which is called the “Ballistic Correction Model” (BCM), against full BTE simulations of a selection of three base materials (GaAs, InAs, and Si) with nanoscale porosity, obtaining excellent agreement. While the key parameters of our method, associated with the geometry of the bulk material, are obtained from the BTE, they can be decoupled and used in arbitrary combinations and scales. We tabulated these parameters for a few cases, enabling the exploration of systems that are beyond those considered in this work. Providing a simple yet accurate estimation of thermal transport in nanostructures, our work sets out to accelerate the discovery of materials for thermal-related applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽笑容完成签到,获得积分10
1秒前
2秒前
2秒前
聪明的冬瓜完成签到,获得积分10
3秒前
fzx发布了新的文献求助10
5秒前
YMM发布了新的文献求助10
8秒前
NexusExplorer应助清新的寄翠采纳,获得10
9秒前
光亮若翠完成签到,获得积分10
14秒前
2024dsb完成签到 ,获得积分10
16秒前
16秒前
19秒前
20秒前
24秒前
26秒前
Teresa完成签到,获得积分20
26秒前
刘企盼完成签到,获得积分10
27秒前
顺利毕业应助super采纳,获得10
28秒前
明明明完成签到,获得积分10
30秒前
baobao发布了新的文献求助10
30秒前
FIN应助王欣采纳,获得10
31秒前
英姑应助义气安露采纳,获得10
31秒前
32秒前
科研通AI5应助LONG采纳,获得10
32秒前
星辰大海应助Salt采纳,获得10
33秒前
稳重奇异果应助ixueyi采纳,获得10
33秒前
聚合怪发布了新的文献求助10
37秒前
38秒前
慕青应助猫仔采纳,获得10
40秒前
Dr.Lee完成签到 ,获得积分10
40秒前
41秒前
聚合怪完成签到,获得积分20
42秒前
fzx关注了科研通微信公众号
43秒前
wangfeng007完成签到 ,获得积分10
44秒前
好大一个赣宝完成签到,获得积分10
45秒前
hailiangzheng完成签到,获得积分10
45秒前
46秒前
幸福幻灵发布了新的文献求助10
47秒前
47秒前
慕子默完成签到,获得积分10
48秒前
wade2016发布了新的文献求助10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761824
求助须知:如何正确求助?哪些是违规求助? 3305615
关于积分的说明 10134845
捐赠科研通 3019634
什么是DOI,文献DOI怎么找? 1658255
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754751