Universal effective medium theory to predict the thermal conductivity in nanostructured materials

热导率 玻尔兹曼方程 平均自由程 纳米孔 材料科学 声子 多孔介质 工作(物理) 热的 多孔性 统计物理学 纳米结构 纳米技术 物理 凝聚态物理 散射 热力学 复合材料 光学
作者
S. Aria Hosseini,Sarah Khanniche,P. Alex Greaney,Giuseppe Romano
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:183: 122040-122040 被引量:9
标识
DOI:10.1016/j.ijheatmasstransfer.2021.122040
摘要

Nanostructured materials enable high thermal transport tunability, holding promises for thermal management and heat harvesting applications. Predicting the effect that nanostructuring has on thermal conductivity requires models, such as the Boltzmann transport equation (BTE), that capture the non-diffusive transport of phonons. Although the BTE has been well validated against several key experiments, notably those on nanoporous materials, its applicability is computationally expensive. Several effective model theories have been put forward to estimate the effective thermal conductivity; however, most of them are either based on simple geometries, e.g., thin films, or simplified material descriptions such as the gray-model approximation. To fill this gap, we propose a model that takes into account the whole mean-free-path (MFP) distribution as well as the complexity of the material’s boundaries in infinitely thick films with extruded porosity using uniparameter logistic regression. We validate our approach, which is called the “Ballistic Correction Model” (BCM), against full BTE simulations of a selection of three base materials (GaAs, InAs, and Si) with nanoscale porosity, obtaining excellent agreement. While the key parameters of our method, associated with the geometry of the bulk material, are obtained from the BTE, they can be decoupled and used in arbitrary combinations and scales. We tabulated these parameters for a few cases, enabling the exploration of systems that are beyond those considered in this work. Providing a simple yet accurate estimation of thermal transport in nanostructures, our work sets out to accelerate the discovery of materials for thermal-related applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DRYAN发布了新的文献求助10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
1秒前
科目三应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得30
1秒前
qing_he应助科研通管家采纳,获得20
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
HZW应助科研通管家采纳,获得10
1秒前
tchao发布了新的文献求助10
2秒前
香蕉觅云应助小心力学采纳,获得10
2秒前
yeye完成签到,获得积分10
3秒前
深情安青应助敏感小松鼠采纳,获得10
4秒前
5秒前
lss完成签到,获得积分10
5秒前
ding应助瘦瘦的傲松采纳,获得30
6秒前
6秒前
戴先森发布了新的文献求助10
7秒前
7秒前
加菲丰丰应助不讲采纳,获得10
10秒前
10秒前
Wri发布了新的文献求助10
11秒前
852应助研友_38KgB8采纳,获得10
12秒前
12秒前
12秒前
13秒前
ZJ发布了新的文献求助60
13秒前
13秒前
13秒前
15秒前
15秒前
醍醐不醒完成签到,获得积分10
16秒前
悦耳一江发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149784
求助须知:如何正确求助?哪些是违规求助? 2800775
关于积分的说明 7841901
捐赠科研通 2458351
什么是DOI,文献DOI怎么找? 1308425
科研通“疑难数据库(出版商)”最低求助积分说明 628499
版权声明 601706