Universal effective medium theory to predict the thermal conductivity in nanostructured materials

热导率 玻尔兹曼方程 平均自由程 纳米孔 材料科学 声子 多孔介质 工作(物理) 热的 多孔性 统计物理学 纳米结构 纳米技术 物理 凝聚态物理 散射 热力学 复合材料 光学
作者
S. Aria Hosseini,Sarah Khanniche,P. Alex Greaney,Giuseppe Romano
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:183: 122040-122040 被引量:9
标识
DOI:10.1016/j.ijheatmasstransfer.2021.122040
摘要

Nanostructured materials enable high thermal transport tunability, holding promises for thermal management and heat harvesting applications. Predicting the effect that nanostructuring has on thermal conductivity requires models, such as the Boltzmann transport equation (BTE), that capture the non-diffusive transport of phonons. Although the BTE has been well validated against several key experiments, notably those on nanoporous materials, its applicability is computationally expensive. Several effective model theories have been put forward to estimate the effective thermal conductivity; however, most of them are either based on simple geometries, e.g., thin films, or simplified material descriptions such as the gray-model approximation. To fill this gap, we propose a model that takes into account the whole mean-free-path (MFP) distribution as well as the complexity of the material’s boundaries in infinitely thick films with extruded porosity using uniparameter logistic regression. We validate our approach, which is called the “Ballistic Correction Model” (BCM), against full BTE simulations of a selection of three base materials (GaAs, InAs, and Si) with nanoscale porosity, obtaining excellent agreement. While the key parameters of our method, associated with the geometry of the bulk material, are obtained from the BTE, they can be decoupled and used in arbitrary combinations and scales. We tabulated these parameters for a few cases, enabling the exploration of systems that are beyond those considered in this work. Providing a simple yet accurate estimation of thermal transport in nanostructures, our work sets out to accelerate the discovery of materials for thermal-related applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行走人生发布了新的文献求助30
2秒前
乐乐应助灵珠学医采纳,获得10
2秒前
个性的荆发布了新的文献求助10
4秒前
科研通AI6应助郑木木采纳,获得10
5秒前
6秒前
科研通AI6应助寒冷的箴采纳,获得10
6秒前
7秒前
8秒前
YU完成签到,获得积分10
9秒前
NGC发布了新的文献求助10
9秒前
端庄的妙菱完成签到,获得积分10
9秒前
9秒前
11秒前
香菜芋头完成签到,获得积分10
11秒前
完美世界应助eijgnij采纳,获得10
11秒前
WB发布了新的文献求助10
12秒前
行走人生完成签到,获得积分10
12秒前
思源应助jagger采纳,获得10
13秒前
14秒前
YU发布了新的文献求助10
14秒前
xiaohui发布了新的文献求助10
14秒前
夹心发布了新的文献求助10
14秒前
刻苦的长颈鹿完成签到,获得积分10
15秒前
体贴雪碧发布了新的文献求助10
15秒前
一只猪完成签到,获得积分10
15秒前
16秒前
111完成签到,获得积分20
16秒前
Ava应助WB采纳,获得10
18秒前
19秒前
19秒前
魔幻诗兰完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
stellc完成签到,获得积分10
20秒前
20秒前
祝你开心发布了新的文献求助10
21秒前
追寻宛海完成签到,获得积分10
22秒前
KKK发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901