Universal effective medium theory to predict the thermal conductivity in nanostructured materials

热导率 玻尔兹曼方程 平均自由程 纳米孔 材料科学 声子 多孔介质 工作(物理) 热的 多孔性 统计物理学 纳米结构 纳米技术 物理 凝聚态物理 散射 热力学 复合材料 光学
作者
S. Aria Hosseini,Sarah Khanniche,P. Alex Greaney,Giuseppe Romano
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:183: 122040-122040 被引量:9
标识
DOI:10.1016/j.ijheatmasstransfer.2021.122040
摘要

Nanostructured materials enable high thermal transport tunability, holding promises for thermal management and heat harvesting applications. Predicting the effect that nanostructuring has on thermal conductivity requires models, such as the Boltzmann transport equation (BTE), that capture the non-diffusive transport of phonons. Although the BTE has been well validated against several key experiments, notably those on nanoporous materials, its applicability is computationally expensive. Several effective model theories have been put forward to estimate the effective thermal conductivity; however, most of them are either based on simple geometries, e.g., thin films, or simplified material descriptions such as the gray-model approximation. To fill this gap, we propose a model that takes into account the whole mean-free-path (MFP) distribution as well as the complexity of the material’s boundaries in infinitely thick films with extruded porosity using uniparameter logistic regression. We validate our approach, which is called the “Ballistic Correction Model” (BCM), against full BTE simulations of a selection of three base materials (GaAs, InAs, and Si) with nanoscale porosity, obtaining excellent agreement. While the key parameters of our method, associated with the geometry of the bulk material, are obtained from the BTE, they can be decoupled and used in arbitrary combinations and scales. We tabulated these parameters for a few cases, enabling the exploration of systems that are beyond those considered in this work. Providing a simple yet accurate estimation of thermal transport in nanostructures, our work sets out to accelerate the discovery of materials for thermal-related applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余111关注了科研通微信公众号
1秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
5秒前
田様应助科研通管家采纳,获得30
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
何照人应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
Able应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得20
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
太叔捕发布了新的文献求助10
6秒前
7秒前
搜集达人应助rotator采纳,获得10
8秒前
星弟完成签到,获得积分10
8秒前
完美世界应助我的山本采纳,获得10
9秒前
shinn发布了新的文献求助10
10秒前
11秒前
充电宝应助汽水121856采纳,获得10
12秒前
13秒前
龙仔子发布了新的文献求助10
13秒前
16秒前
16秒前
Eternitymaria发布了新的文献求助10
18秒前
19秒前
共享精神应助scabbard24采纳,获得10
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498