Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations

错义突变 突变 突变体 计算生物学 突变蛋白 蛋白质稳定性 蛋白质设计 遗传学 蛋白质工程 理论(学习稳定性) 生物 计算机科学 蛋白质结构 机器学习 基因 生物化学
作者
Shahid Iqbal,Fuyi Li,Tatsuya Akutsu,David B. Ascher,Geoffrey I. Webb,Jiangning Song
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:40
标识
DOI:10.1093/bib/bbab184
摘要

Abstract Understanding how a mutation might affect protein stability is of significant importance to protein engineering and for understanding protein evolution genetic diseases. While a number of computational tools have been developed to predict the effect of missense mutations on protein stability protein stability upon mutations, they are known to exhibit large biases imparted in part by the data used to train and evaluate them. Here, we provide a comprehensive overview of predictive tools, which has provided an evolving insight into the importance and relevance of features that can discern the effects of mutations on protein stability. A diverse selection of these freely available tools was benchmarked using a large mutation-level blind dataset of 1342 experimentally characterised mutations across 130 proteins from ThermoMutDB, a second test dataset encompassing 630 experimentally characterised mutations across 39 proteins from iStable2.0 and a third blind test dataset consisting of 268 mutations in 27 proteins from the newly published ProThermDB. The performance of the methods was further evaluated with respect to the site of mutation, type of mutant residue and by ranging the pH and temperature. Additionally, the classification performance was also evaluated by classifying the mutations as stabilizing (∆∆G ≥ 0) or destabilizing (∆∆G < 0). The results reveal that the performance of the predictors is affected by the site of mutation and the type of mutant residue. Further, the results show very low performance for pH values 6–8 and temperature higher than 65 for all predictors except iStable2.0 on the S630 dataset. To illustrate how stability and structure change upon single point mutation, we considered four stabilizing, two destabilizing and two stabilizing mutations from two proteins, namely the toxin protein and bovine liver cytochrome. Overall, the results on S268, S630 and S1342 datasets show that the performance of the integrated predictors is better than the mechanistic or individual machine learning predictors. We expect that this paper will provide useful guidance for the design and development of next-generation bioinformatic tools for predicting protein stability changes upon mutations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景辣条应助科研通管家采纳,获得10
2秒前
ygr应助科研通管家采纳,获得20
2秒前
2秒前
景辣条应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
景辣条应助科研通管家采纳,获得10
3秒前
0128lun应助科研通管家采纳,获得10
3秒前
5秒前
tachang完成签到,获得积分10
7秒前
8秒前
周浩宇发布了新的文献求助10
9秒前
荼柒完成签到,获得积分10
10秒前
懵懂的子骞完成签到 ,获得积分10
12秒前
ddd完成签到,获得积分10
20秒前
荼柒完成签到,获得积分10
21秒前
22秒前
22秒前
Lucas应助负责的柏柳采纳,获得30
25秒前
SBGLP发布了新的文献求助10
25秒前
老北京发布了新的文献求助10
25秒前
25秒前
老北京发布了新的文献求助10
26秒前
老北京发布了新的文献求助10
27秒前
28秒前
甜美小蕾发布了新的文献求助10
29秒前
荼柒完成签到,获得积分10
32秒前
周浩宇完成签到,获得积分20
37秒前
fan完成签到 ,获得积分10
39秒前
41秒前
42秒前
荼柒完成签到,获得积分10
43秒前
45秒前
46秒前
毛毛猫发布了新的文献求助10
46秒前
49秒前
完美世界应助周一斩采纳,获得10
49秒前
aaaaa发布了新的文献求助10
50秒前
50秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079