Unsupervised Domain Adaptation With Variational Approximation for Cardiac Segmentation.

模式识别(心理学) 域适应 正规化(语言学) 最大后验估计
作者
Fuping Wu,Xiahai Zhuang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3555-3567 被引量:3
标识
DOI:10.1109/tmi.2021.3090412
摘要

Unsupervised domain adaptation is useful in medical image segmentation. Particularly, when ground truths of the target images are not available, domain adaptation can train a target-specific model by utilizing the existing labeled images from other modalities. Most of the reported works mapped images of both the source and target domains into a common latent feature space, and then reduced their discrepancy either implicitly with adversarial training or explicitly by directly minimizing a discrepancy metric. In this work, we propose a new framework, where the latent features of both domains are driven towards a common and parameterized variational form, whose conditional distribution given the image is Gaussian. This is achieved by two networks based on variational auto-encoders (VAEs) and a regularization for this variational approximation. Both of the VAEs, each for one domain, contain a segmentation module, where the source segmentation is trained in a supervised manner, while the target one is trained unsupervisedly. We validated the proposed domain adaptation method using two cardiac segmentation tasks, i.e., the cross-modality (CT and MR) whole heart segmentation and the cross-sequence cardiac MR segmentation. Results show that the proposed method achieved better accuracies compared to two state-of-the-art approaches and demonstrated good potential for cardiac segmentation. Furthermore, the proposed explicit regularization was shown to be effective and efficient in narrowing down the distribution gap between domains, which is useful for unsupervised domain adaptation. The code and data has been released via.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero应助thl采纳,获得10
2秒前
2秒前
2秒前
曙光完成签到,获得积分10
2秒前
充电宝应助鱼与木头采纳,获得10
2秒前
丘比特应助gugu采纳,获得10
3秒前
3秒前
Wency发布了新的文献求助10
5秒前
5秒前
涛涛完成签到,获得积分10
5秒前
道客郭发布了新的文献求助10
5秒前
充电宝应助Xu_W卜采纳,获得10
5秒前
Maroma完成签到,获得积分10
7秒前
何钦俊发布了新的文献求助10
8秒前
脆脆发布了新的文献求助10
8秒前
8秒前
9秒前
熊本熊完成签到,获得积分10
9秒前
10秒前
10秒前
取个名儿吧完成签到,获得积分10
11秒前
泡芙关注了科研通微信公众号
11秒前
11秒前
完美世界应助April采纳,获得10
12秒前
科研通AI5应助lulu采纳,获得10
12秒前
背后寒烟发布了新的文献求助10
12秒前
Fancy发布了新的文献求助10
13秒前
共享精神应助yang采纳,获得10
14秒前
喈喈青鸟完成签到,获得积分10
14秒前
24发布了新的文献求助10
14秒前
晴晴完成签到,获得积分10
15秒前
15秒前
15秒前
17秒前
hanliulaixi发布了新的文献求助10
17秒前
ygng_uua完成签到,获得积分20
19秒前
20秒前
欣欣发布了新的文献求助10
22秒前
道客郭完成签到,获得积分10
22秒前
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3757301
求助须知:如何正确求助?哪些是违规求助? 3300538
关于积分的说明 10114071
捐赠科研通 3014971
什么是DOI,文献DOI怎么找? 1655825
邀请新用户注册赠送积分活动 790094
科研通“疑难数据库(出版商)”最低求助积分说明 753591