已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sensitive label-free Cu2O/Ag fused chemometrics SERS sensor for rapid detection of total arsenic in tea

纳米探针 化学计量学 检出限 化学 偏最小二乘回归 相关系数 分析化学(期刊) 色谱法 材料科学 纳米技术 数学 纳米颗粒 统计 有机化学
作者
Alberta Osei Barimah,Zhiming Guo,Akwasi Akomeah Agyekum,Chuang Guo,Ping Chen,Hesham R. El‐Seedi,Xiaobo Zou,Quansheng Chen
出处
期刊:Food Control [Elsevier]
卷期号:130: 108341-108341 被引量:28
标识
DOI:10.1016/j.foodcont.2021.108341
摘要

Arsenic (As) is one of the toxic, persistent, and lethal heavy metalloids and requires rapid, less costly, and sensitive detection methods. This study proposed a label-free cuprous oxide/silver (Cu2O/Ag) surface-enhanced Raman scattering (SERS) nanoprobe to detect total As in tea. Different total As spiked tea concentrations were mixed with the Cu2O/Ag SERS nanoprobe for the SERS detection. Quantitative models were established for predicting the total As in tea by comparatively applying chemometric algorithms. Amongst the algorithms, competitive adaptive reweighted sampling partial least squares (CARS-PLS) optimized the most effective spectral variables to predict the total As in tea efficiently. The CARS-PLS gave the highest correlation coefficient value (Rp = 0.9935), very low root means square error (RMSEP = 0.0496 μg g−1) in the prediction set and recorded the highest RPD value of 8.819. The proposed nanoprobe achieved a lower detection limit (0.00561 μg g−1), excellent selectivity, satisfactory reproducibility, and stability. No significant difference was recorded when the performance of the Cu2O/Ag total As SERS sensor was compared with the inductively coupled plasma mass spectrometry (ICP-MS) method. Therefore, this developed Cu2O/Ag coupled chemometrics SERS sensing method could be used to efficiently determine, quantify, and predict total As in tea to promote monitoring of heavy metal contaminants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lyt发布了新的文献求助10
2秒前
3秒前
4秒前
6秒前
啊z应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
毛豆应助科研通管家采纳,获得10
7秒前
猪猪hero应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
孤巷的猫完成签到,获得积分10
7秒前
drchen发布了新的文献求助10
7秒前
petrichor完成签到 ,获得积分10
8秒前
传奇3应助星河在眼里采纳,获得10
8秒前
Rui关闭了Rui文献求助
9秒前
karstbing完成签到,获得积分10
9秒前
12秒前
ShiYanYang完成签到,获得积分10
12秒前
儒雅老太完成签到,获得积分10
13秒前
13秒前
bkagyin应助Niko采纳,获得10
13秒前
14秒前
难过小懒虫完成签到,获得积分10
15秒前
pathway完成签到 ,获得积分10
16秒前
嘉禾瑶发布了新的文献求助10
17秒前
seven完成签到 ,获得积分10
17秒前
drchen完成签到,获得积分10
18秒前
大眼睛土豆完成签到,获得积分20
18秒前
任性铅笔发布了新的文献求助20
18秒前
19秒前
19秒前
20秒前
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073176
关于积分的说明 9129919
捐赠科研通 2764838
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009