Variable selection in double/debiased machine learning for causal inference: an outcome-adaptive approach

结果(博弈论) 因果推理 估计员 协变量 计算机科学 倾向得分匹配 Lasso(编程语言) 机器学习 推论 特征选择 人工智能 工具变量 差异(会计) 计量经济学 统计 数学 数理经济学 业务 万维网 会计
作者
Daijiro Kabata,Mototsugu Shintani
出处
期刊:Communications in Statistics - Simulation and Computation [Informa]
卷期号:52 (12): 5880-5893 被引量:3
标识
DOI:10.1080/03610918.2021.2001655
摘要

Access to high-dimensional data has made the use of machine learning in causal inference more common in recent years. The double/debiased machine learning (DML) estimator for the treatment effect is designed to obtain a valid inference when nuisance functions in the treatment and outcome equations, are estimated using machine learning methods. However, when some covariates in the treatment equation do not appear in the outcome equation, the inclusion of such covariates in the propensity score estimation will result in the increasing bias and variance of the DML estimator. To solve this issue, we introduce an outcome-adaptive DML estimator, which incorporates the outcome-adaptive lasso for the variable selection in the propensity score estimation. We evaluate the performance of the proposed method using Monte Carlo simulation. The results indicate that our proposed method in many cases outperforms other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
Orange应助HH采纳,获得10
2秒前
黄臻发布了新的文献求助10
2秒前
3秒前
减肥法发布了新的文献求助10
4秒前
4秒前
研友_n0kqxL完成签到,获得积分10
4秒前
HQQ发布了新的文献求助10
4秒前
microlite完成签到,获得积分10
4秒前
言言言言发布了新的文献求助30
5秒前
量子星尘发布了新的文献求助10
5秒前
2425发布了新的文献求助50
5秒前
明亮的薯片完成签到,获得积分10
5秒前
不摸鱼轩完成签到,获得积分10
5秒前
东东完成签到 ,获得积分10
5秒前
归尘发布了新的文献求助10
5秒前
Aeon发布了新的文献求助10
6秒前
7秒前
妮可罗宾完成签到 ,获得积分10
8秒前
8秒前
9秒前
含糊的丹彤关注了科研通微信公众号
9秒前
fovviy完成签到,获得积分10
10秒前
chu完成签到,获得积分10
10秒前
专注的问寒应助走四方采纳,获得20
10秒前
科目三应助xie采纳,获得10
12秒前
科研通AI6应助减肥法采纳,获得10
12秒前
13秒前
13秒前
13秒前
小蘑菇应助Leo000007采纳,获得10
14秒前
guojinyu发布了新的文献求助30
14秒前
liuliu梅完成签到 ,获得积分10
14秒前
14秒前
归尘发布了新的文献求助10
14秒前
15秒前
乐乐应助调皮的巧凡采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637232
求助须知:如何正确求助?哪些是违规求助? 4743065
关于积分的说明 14998575
捐赠科研通 4795529
什么是DOI,文献DOI怎么找? 2561991
邀请新用户注册赠送积分活动 1521497
关于科研通互助平台的介绍 1481513