亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Doc2vec-based link prediction approach using SAO structures: application to patent network

计算机科学 背景(考古学) 相似性(几何) 互联网 引用 链接(几何体) 领域(数学) 情报检索 数据挖掘 人工智能 万维网 数学 图像(数学) 古生物学 纯数学 生物 计算机网络
作者
Byungun Yoon,Songhee Kim,Sunhye Kim,Hyeonju Seol
出处
期刊:Scientometrics [Springer Nature]
卷期号:127 (9): 5385-5414 被引量:17
标识
DOI:10.1007/s11192-021-04187-4
摘要

As the amount of documents has exploded in the Internet era, many researchers have tried to understand the relationships between documents and predict the links between similar but unconnected documents. However, existing link prediction techniques that use the predefined links of documents might provide incorrect results, because of the generic problem of citation analysis. Moreover, they may fail to reflect important contents of documents in the link prediction process. Thus, we propose a new link prediction approach that employs the Doc2vec algorithm, a document-embedding method, in order to predict potential links between documents, by reflecting the functional context of technological words. For this, first, we collected both citation information and documents of patents of interest, and generated a patent network by using the citation relationship between patents. Second, we identified unconnected links between nodes and transformed the patent document into document vectors, based on the Doc2vec algorithm. In particular, since patent documents include useful functions for solving technological problems, the proposed approach extracts subject-action-object (SAO) structures that we used to generate document vectors. Then, we calculated the similarity between patents in the unconnected links of a patent network, and could predict potential links by using the similarity. Third, we validated the results of the proposed approach by comparing them using the Adamic–Adar technique, one of the traditional link prediction techniques, and word vector-based link prediction. We applied the Doc2vec-based link prediction approach to a real case, the unmanned aerial vehicle (UAV) technology field. We found that the proposed approach makes better predictions performance than the Adamic–Adar technique and the word vector approach. Our results can help analyzers accurately forecast future relationships between nodes in a network, and give R&D managers insightful information on the future direction of technological development by using a patent network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
丝垚完成签到 ,获得积分10
18秒前
20秒前
29秒前
30秒前
32秒前
41秒前
45秒前
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
46秒前
心随以动完成签到 ,获得积分10
46秒前
Gigi发布了新的文献求助10
47秒前
48秒前
50秒前
冷艳的立果应助Gigi采纳,获得10
54秒前
修辛完成签到 ,获得积分10
54秒前
1分钟前
1分钟前
1分钟前
圆滚滚的栗子君完成签到 ,获得积分10
1分钟前
bkagyin应助ling采纳,获得10
1分钟前
善良的冷梅完成签到,获得积分10
1分钟前
2分钟前
马騳骉完成签到,获得积分10
2分钟前
2分钟前
2分钟前
zhaozi发布了新的文献求助10
2分钟前
zhaozi完成签到,获得积分10
2分钟前
雾蓝完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
Gzb发布了新的文献求助10
3分钟前
情怀应助Gzb采纳,获得10
3分钟前
xyawl425完成签到,获得积分10
3分钟前
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491339
求助须知:如何正确求助?哪些是违规求助? 3077921
关于积分的说明 9151234
捐赠科研通 2770492
什么是DOI,文献DOI怎么找? 1520508
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298