数学
组合数学
邻接矩阵
等角多边形
光谱半径
特征向量
有界函数
次线性函数
多重性(数学)
顶点(图论)
图形
离散数学
几何学
正多边形
数学分析
物理
量子力学
作者
Zilin Jiang,Jonathan Tidor,Yuan Yao,Shengtong Zhang,Yufei Zhao
标识
DOI:10.4007/annals.2021.194.3.3
摘要
Solving a longstanding problem on equiangular lines, we determine, for each given fixed angle and in all sufficiently large dimensions, the maximum number of lines pairwise separated by the given angle. Fix $0 < \alpha < 1$. Let $N_\alpha(d)$ denote the maximum number of lines through the origin in $\mathbb{R}^d$ with pairwise common angle $\arccos \alpha$. Let $k$ denote the minimum number (if it exists) of vertices in a graph whose adjacency matrix has spectral radius exactly $(1-\alpha)/(2\alpha)$. If $k < \infty$, then $N_\alpha(d) = \lfloor k(d-1)/(k-1) \rfloor$ for all sufficiently large $d$, and otherwise $N_\alpha(d) = d + o(d)$. In particular, $N_{1/(2k-1)}(d) = \lfloor k(d-1)/(k-1) \rfloor$ for every integer $k\ge 2$ and all sufficiently large $d$. A key ingredient is a new result in spectral graph theory: the adjacency matrix of a connected bounded degree graph has sublinear second eigenvalue multiplicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI