亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BioNet: a large-scale and heterogeneous biological network model for interaction prediction with graph convolution

计算机科学 卷积(计算机科学) 图形 比例(比率) 人工智能 理论计算机科学 地图学 地理 人工神经网络
作者
Xi Yang,Wei Wang,Jing-Lun Ma,Yanlong Qiu,Kai Lü,Dongsheng Cao,Chengkun Wu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:20
标识
DOI:10.1093/bib/bbab491
摘要

Abstract Motivation Understanding chemical–gene interactions (CGIs) is crucial for screening drugs. Wet experiments are usually costly and laborious, which limits relevant studies to a small scale. On the contrary, computational studies enable efficient in-silico exploration. For the CGI prediction problem, a common method is to perform systematic analyses on a heterogeneous network involving various biomedical entities. Recently, graph neural networks become popular in the field of relation prediction. However, the inherent heterogeneous complexity of biological interaction networks and the massive amount of data pose enormous challenges. This paper aims to develop a data-driven model that is capable of learning latent information from the interaction network and making correct predictions. Results We developed BioNet, a deep biological networkmodel with a graph encoder–decoder architecture. The graph encoder utilizes graph convolution to learn latent information embedded in complex interactions among chemicals, genes, diseases and biological pathways. The learning process is featured by two consecutive steps. Then, embedded information learnt by the encoder is then employed to make multi-type interaction predictions between chemicals and genes with a tensor decomposition decoder based on the RESCAL algorithm. BioNet includes 79 325 entities as nodes, and 34 005 501 relations as edges. To train such a massive deep graph model, BioNet introduces a parallel training algorithm utilizing multiple Graphics Processing Unit (GPUs). The evaluation experiments indicated that BioNet exhibits outstanding prediction performance with a best area under Receiver Operating Characteristic (ROC) curve of 0.952, which significantly surpasses state-of-theart methods. For further validation, top predicted CGIs of cancer and COVID-19 by BioNet were verified by external curated data and published literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琪琪完成签到 ,获得积分10
14秒前
32秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
科目三应助科研通管家采纳,获得10
46秒前
zht完成签到,获得积分10
55秒前
彭于晏应助ping采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
Wang完成签到 ,获得积分20
2分钟前
ping发布了新的文献求助10
2分钟前
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
星辰大海应助ping采纳,获得20
3分钟前
3分钟前
3分钟前
4分钟前
玩命的导师完成签到,获得积分20
4分钟前
4分钟前
4分钟前
5分钟前
昊阳发布了新的文献求助10
5分钟前
5分钟前
ping发布了新的文献求助20
5分钟前
彭于晏应助俊秀的一笑采纳,获得10
5分钟前
5分钟前
5分钟前
烨枫晨曦完成签到,获得积分10
6分钟前
6分钟前
丘比特应助科研通管家采纳,获得10
6分钟前
完美世界应助科研通管家采纳,获得10
6分钟前
6分钟前
7分钟前
可爱慕卉发布了新的文献求助10
7分钟前
可爱慕卉完成签到,获得积分10
8分钟前
8分钟前
mashibeo发布了新的文献求助10
8分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015704
关于积分的说明 8871668
捐赠科研通 2703410
什么是DOI,文献DOI怎么找? 1482290
科研通“疑难数据库(出版商)”最低求助积分说明 685175
邀请新用户注册赠送积分活动 679951