材料科学
阴极
离子
氧化物
钠
锂(药物)
相(物质)
纳米尺度
剪切(地质)
相变
化学工程
化学物理
纳米技术
复合材料
冶金
热力学
电气工程
内分泌学
工程类
量子力学
有机化学
化学
物理
医学
作者
Qun Huang,Meiyu Wang,Li Zhang,Shuo Qi,Yiming Feng,Pingge He,Xiaobo Ji,Peng Wang,Liangjun Zhou,Shuangqiang Chen,Weifeng Wei
标识
DOI:10.1016/j.ensm.2021.11.041
摘要
Layered sodium transition metal (TM) oxides exhibit great potential as high energy density cathode materials for sodium-ion batteries (SIBs). The large Na ions, nevertheless, adopts various coordination environments that are dependent of the sodium concentration, giving rise to cyclical gliding of TM layers and P-O phase transitions upon Na extraction/insertion process. The detrimental interlayer-gliding induced phase transformations lead to deteriorated round-trip energy efficiency, rate capability and cycling stability of electrodes. Herein, we demonstrate a shear-resistant interface via the supersaturation of lithium to overcome the interlayer-gliding behavior and inhibit the multiple P-O phase transitions in P2-type Na0.67Mn0.67Ni0.33O2. The results indicate that the nanoscale interface is composed of lithium-enriched O3 nanodomains in the P2 phase matrix, resulting in smooth charge/discharge profiles and superior cycling stability of P2-type Na0.67Mn0.67Ni0.33O2 cathode under a high cut-off voltage of 4.5 V. This work highlights the concept of modulating the interfacial shear stress for improving the long-term cycling stability of high-voltage layered cathode materials that suffer from severe phase transformations.
科研通智能强力驱动
Strongly Powered by AbleSci AI