Development of a prediction models for chemotherapy-induced adverse drug reactions: A retrospective observational study using electronic health records

医学 观察研究 健康档案 药物反应 回顾性队列研究 药品 内科学 不利影响 病历 重症监护医学 化疗 肿瘤科 药理学 医疗保健 经济 经济增长
作者
Jeongah On,Hyeoun‐Ae Park,Sooyoung Yoo
出处
期刊:European Journal of Oncology Nursing [Elsevier BV]
卷期号:56: 102066-102066 被引量:24
标识
DOI:10.1016/j.ejon.2021.102066
摘要

Chemotherapy-induced adverse drug reactions (ADRs) are common and diverse, and not only affect changes or interruptions to treatment schedules, but also negatively affect the patient's quality of life. This study aimed to predict eight chemotherapy-induced ADRs based on electronic health records (EHR) data using machine-learning algorithms.We used EHR data of 6812 chemotherapy cycles for 935 adult patients receiving four different chemotherapy regimens (FOLFOX, 5-fluorouracil + oxaliplatin + leucovorin; FOLFIRI, 5-fluorouracil + irinotecan + leucovorin; paclitaxel; and GP, gemcitabine + cisplatin) at a tertiary teaching hospital between January 2015 and June 2016. The predicted ADRs included nausea-vomiting, fatigue-anorexia, diarrhea, peripheral neuropathy, hypersensitivity, stomatitis, hand-foot syndrome, and constipation. Three machine learning algorithms were used to developed prediction models: logistic regression, decision tree, and artificial neural network. We compared the performance of the models with area of under the ROC (Receiver Operating Characteristic) curve (AUC) and accuracy.The AUCs of the logistic regression, decision tree, and artificial neural network models were 0.62-0.83, 0.61-0.83, and 0.62-0.83, respectively, and the accuracies were 0.59-0.84, 0.55-0.88, and 0.57-0.88, respectively. Among the algorithms, the logistic regression models performed best and had the highest AUC for six ADRs (range 0.67-0.83). The nausea-vomiting prediction models performed best with an AUC of 0.83 for the three algorithms.The prediction models for chemotherapy-induced ADRs were able to predict eight ADRs using EHR data. The logistic regression models were best suited to predict ADRs. The models developed in this study can be used to predict the risk of ADRs in patients receiving chemotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吃货完成签到,获得积分10
刚刚
王清水完成签到 ,获得积分10
刚刚
刚刚
zhangjianzeng完成签到,获得积分10
刚刚
MAOJCFK完成签到,获得积分10
1秒前
派大星完成签到,获得积分10
1秒前
科研通AI2S应助lulu采纳,获得10
1秒前
333完成签到,获得积分10
1秒前
YUuuu完成签到,获得积分10
2秒前
1028181661发布了新的文献求助10
2秒前
2秒前
2秒前
两先生完成签到 ,获得积分10
2秒前
和谐不愁发布了新的文献求助10
2秒前
月月月鸟伟完成签到,获得积分10
3秒前
高大莺发布了新的文献求助10
3秒前
酷波er应助木四点采纳,获得10
3秒前
募股小完成签到,获得积分10
3秒前
香蕉觅云应助11采纳,获得10
4秒前
zhen完成签到 ,获得积分10
4秒前
幸福的项链完成签到,获得积分10
4秒前
滴滴发布了新的文献求助50
5秒前
5秒前
飞天817完成签到,获得积分10
5秒前
kg完成签到,获得积分10
5秒前
骆丹妗完成签到 ,获得积分10
5秒前
Lucas完成签到,获得积分10
5秒前
5秒前
所所应助kkkkkkkkk采纳,获得10
6秒前
cetomacrogol完成签到,获得积分10
6秒前
湛湛发布了新的文献求助10
7秒前
初之完成签到,获得积分10
8秒前
感性的安露完成签到,获得积分0
8秒前
汪汪队发布了新的文献求助10
8秒前
xuanli完成签到,获得积分10
8秒前
LU完成签到,获得积分10
9秒前
nuoran完成签到,获得积分10
9秒前
隐形曼青应助1028181661采纳,获得10
9秒前
10秒前
张馨友完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968719
求助须知:如何正确求助?哪些是违规求助? 3513608
关于积分的说明 11168681
捐赠科研通 3248960
什么是DOI,文献DOI怎么找? 1794573
邀请新用户注册赠送积分活动 875194
科研通“疑难数据库(出版商)”最低求助积分说明 804716