Development of a prediction models for chemotherapy-induced adverse drug reactions: A retrospective observational study using electronic health records

医学 观察研究 健康档案 药物反应 回顾性队列研究 药品 内科学 不利影响 病历 重症监护医学 化疗 肿瘤科 药理学 医疗保健 经济 经济增长
作者
Jeongah On,Hyeoun‐Ae Park,Sooyoung Yoo
出处
期刊:European Journal of Oncology Nursing [Elsevier BV]
卷期号:56: 102066-102066 被引量:24
标识
DOI:10.1016/j.ejon.2021.102066
摘要

Chemotherapy-induced adverse drug reactions (ADRs) are common and diverse, and not only affect changes or interruptions to treatment schedules, but also negatively affect the patient's quality of life. This study aimed to predict eight chemotherapy-induced ADRs based on electronic health records (EHR) data using machine-learning algorithms.We used EHR data of 6812 chemotherapy cycles for 935 adult patients receiving four different chemotherapy regimens (FOLFOX, 5-fluorouracil + oxaliplatin + leucovorin; FOLFIRI, 5-fluorouracil + irinotecan + leucovorin; paclitaxel; and GP, gemcitabine + cisplatin) at a tertiary teaching hospital between January 2015 and June 2016. The predicted ADRs included nausea-vomiting, fatigue-anorexia, diarrhea, peripheral neuropathy, hypersensitivity, stomatitis, hand-foot syndrome, and constipation. Three machine learning algorithms were used to developed prediction models: logistic regression, decision tree, and artificial neural network. We compared the performance of the models with area of under the ROC (Receiver Operating Characteristic) curve (AUC) and accuracy.The AUCs of the logistic regression, decision tree, and artificial neural network models were 0.62-0.83, 0.61-0.83, and 0.62-0.83, respectively, and the accuracies were 0.59-0.84, 0.55-0.88, and 0.57-0.88, respectively. Among the algorithms, the logistic regression models performed best and had the highest AUC for six ADRs (range 0.67-0.83). The nausea-vomiting prediction models performed best with an AUC of 0.83 for the three algorithms.The prediction models for chemotherapy-induced ADRs were able to predict eight ADRs using EHR data. The logistic regression models were best suited to predict ADRs. The models developed in this study can be used to predict the risk of ADRs in patients receiving chemotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助10
1秒前
liu完成签到,获得积分10
1秒前
QQ完成签到 ,获得积分10
1秒前
大橙子发布了新的文献求助30
1秒前
丫头完成签到 ,获得积分10
2秒前
严西完成签到,获得积分10
3秒前
Mr.Ren完成签到,获得积分10
3秒前
Feng发布了新的文献求助10
4秒前
4秒前
skepticalsnails完成签到,获得积分0
5秒前
喜悦的向日葵完成签到,获得积分10
8秒前
纸柒完成签到 ,获得积分10
9秒前
10秒前
肖战战完成签到 ,获得积分10
11秒前
一一一应助songvv采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
陶一二完成签到,获得积分10
14秒前
MM完成签到,获得积分10
15秒前
Who1990完成签到,获得积分10
16秒前
李友健完成签到 ,获得积分10
17秒前
hhhhh完成签到 ,获得积分10
19秒前
可耐的乘风完成签到,获得积分10
21秒前
wangnn发布了新的文献求助20
21秒前
大橙子发布了新的文献求助10
22秒前
22秒前
22秒前
余慵慵完成签到 ,获得积分10
23秒前
奋斗的小土豆完成签到,获得积分10
24秒前
ZJJ静完成签到,获得积分10
24秒前
邢大宝完成签到,获得积分10
25秒前
尔玉完成签到 ,获得积分10
27秒前
memo完成签到,获得积分10
27秒前
27秒前
一路芬芳完成签到,获得积分20
27秒前
29秒前
一一一应助songvv采纳,获得10
29秒前
29秒前
SciKid524完成签到 ,获得积分10
31秒前
科研通AI2S应助hhh采纳,获得10
31秒前
QWE完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022