Development of a prediction models for chemotherapy-induced adverse drug reactions: A retrospective observational study using electronic health records

医学 观察研究 健康档案 药物反应 回顾性队列研究 药品 内科学 不利影响 病历 重症监护医学 化疗 肿瘤科 药理学 医疗保健 经济增长 经济
作者
Jeongah On,Hyeoun‐Ae Park,Sooyoung Yoo
出处
期刊:European Journal of Oncology Nursing [Elsevier]
卷期号:56: 102066-102066 被引量:27
标识
DOI:10.1016/j.ejon.2021.102066
摘要

Chemotherapy-induced adverse drug reactions (ADRs) are common and diverse, and not only affect changes or interruptions to treatment schedules, but also negatively affect the patient's quality of life. This study aimed to predict eight chemotherapy-induced ADRs based on electronic health records (EHR) data using machine-learning algorithms.We used EHR data of 6812 chemotherapy cycles for 935 adult patients receiving four different chemotherapy regimens (FOLFOX, 5-fluorouracil + oxaliplatin + leucovorin; FOLFIRI, 5-fluorouracil + irinotecan + leucovorin; paclitaxel; and GP, gemcitabine + cisplatin) at a tertiary teaching hospital between January 2015 and June 2016. The predicted ADRs included nausea-vomiting, fatigue-anorexia, diarrhea, peripheral neuropathy, hypersensitivity, stomatitis, hand-foot syndrome, and constipation. Three machine learning algorithms were used to developed prediction models: logistic regression, decision tree, and artificial neural network. We compared the performance of the models with area of under the ROC (Receiver Operating Characteristic) curve (AUC) and accuracy.The AUCs of the logistic regression, decision tree, and artificial neural network models were 0.62-0.83, 0.61-0.83, and 0.62-0.83, respectively, and the accuracies were 0.59-0.84, 0.55-0.88, and 0.57-0.88, respectively. Among the algorithms, the logistic regression models performed best and had the highest AUC for six ADRs (range 0.67-0.83). The nausea-vomiting prediction models performed best with an AUC of 0.83 for the three algorithms.The prediction models for chemotherapy-induced ADRs were able to predict eight ADRs using EHR data. The logistic regression models were best suited to predict ADRs. The models developed in this study can be used to predict the risk of ADRs in patients receiving chemotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
玛卡巴卡发布了新的文献求助10
1秒前
发嗲的白竹关注了科研通微信公众号
2秒前
帅气一刀完成签到,获得积分10
3秒前
yuanhao发布了新的文献求助10
3秒前
结实的凝天完成签到,获得积分10
3秒前
Mr.Ren完成签到,获得积分10
4秒前
伊萨卡完成签到 ,获得积分10
4秒前
渥鸡蛋完成签到,获得积分10
4秒前
木南发布了新的文献求助10
5秒前
5秒前
科目三应助张景采纳,获得10
5秒前
zzz发布了新的文献求助10
5秒前
蝴蝶与猫完成签到 ,获得积分10
5秒前
6秒前
7秒前
开朗自行车完成签到 ,获得积分20
7秒前
今后应助活泼山雁采纳,获得10
7秒前
8秒前
十四完成签到 ,获得积分10
9秒前
橘子汽水完成签到 ,获得积分20
9秒前
xxn关注了科研通微信公众号
10秒前
8899发布了新的文献求助10
10秒前
10秒前
单纯乘风完成签到 ,获得积分10
11秒前
王七七发布了新的文献求助10
11秒前
11秒前
雨中漫步完成签到,获得积分0
12秒前
ding应助张鑫采纳,获得10
12秒前
13秒前
14秒前
慕青应助WY采纳,获得10
14秒前
song发布了新的文献求助10
14秒前
cc完成签到,获得积分10
14秒前
好久不见发布了新的文献求助10
15秒前
15秒前
wanci应助PDIF-CN2采纳,获得10
15秒前
Vme50完成签到,获得积分10
16秒前
李晓凤发布了新的文献求助10
16秒前
滋滋发布了新的文献求助10
18秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501188
求助须知:如何正确求助?哪些是违规求助? 4597536
关于积分的说明 14459486
捐赠科研通 4530972
什么是DOI,文献DOI怎么找? 2483024
邀请新用户注册赠送积分活动 1466722
关于科研通互助平台的介绍 1439335