Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution

强化学习 冲突解决 趋同(经济学) 计算机科学 人工智能 航向(导航) 物理定律 马尔可夫决策过程 人工神经网络 机器学习 数学 物理 工程类 马尔可夫过程 航空航天工程 政治学 法学 经济 统计 量子力学 经济增长
作者
Peng Zhao,Yongming Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 8288-8301 被引量:29
标识
DOI:10.1109/tits.2021.3077572
摘要

A novel method for aircraft conflict resolution in air traffic management (ATM) using physics informed deep reinforcement learning (RL) is proposed. The motivation is to integrate prior physics understanding and model in the learning algorithm to facilitate the optimal policy searching and to present human-explainable results for display and decision-making. First, the information of intruders' quantity, speeds, heading angles, and positions are integrated into an image using the solution space diagram (SSD), which is used in the ATM for conflict detection and mitigation. The SSD serves as the prior physics knowledge from the ATM domain which is the input features for learning. A convolution neural network is used with the SSD images for the deep reinforcement learning. Next, an actor-critic network is constructed to learn conflict resolution policy. Several numerical examples are used to illustrate the proposed methodology. Both discrete and continuous RL are explored using the proposed concept of physics informed learning. A detailed comparison and discussion of the proposed algorithm and classical RL-based conflict resolution is given. The proposed approach is able to handle arbitrary number of intruders and also shows faster convergence behavior due to the encoded prior physics understanding. In addition, the learned optimal policy is also beneficial for proper display to support decision-making. Several major conclusions and future work are presented based on the current investigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cy-coolorgan发布了新的文献求助10
刚刚
充电宝应助刻苦念桃采纳,获得10
刚刚
bkagyin应助哈哈采纳,获得10
2秒前
2秒前
赵俊博完成签到,获得积分20
3秒前
爆米花应助昏睡的朝雪采纳,获得10
4秒前
ysy完成签到,获得积分10
4秒前
孤独的凤完成签到,获得积分10
4秒前
Evander完成签到,获得积分10
4秒前
小熊猫完成签到,获得积分10
5秒前
浮游应助77采纳,获得10
6秒前
科研通AI6应助77采纳,获得10
6秒前
7秒前
bkagyin应助zaphkiel采纳,获得10
8秒前
Cy-coolorgan完成签到,获得积分10
8秒前
ZRR完成签到,获得积分10
8秒前
JamesPei应助苦学僧采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
Qwe完成签到,获得积分10
11秒前
engine完成签到,获得积分10
12秒前
yy完成签到,获得积分10
15秒前
英俊的铭应助liusha采纳,获得10
17秒前
科目三应助柔弱的苗条采纳,获得10
19秒前
科研通AI6应助自觉绿草采纳,获得10
19秒前
muqi完成签到,获得积分10
19秒前
小于完成签到,获得积分10
20秒前
20秒前
星辰大海应助机智灯泡采纳,获得10
21秒前
22秒前
哈哈哈发布了新的文献求助10
26秒前
猫蒲发布了新的文献求助10
28秒前
科研通AI6应助yier采纳,获得10
28秒前
小杨完成签到 ,获得积分10
29秒前
年轻真好啊完成签到,获得积分10
30秒前
30秒前
Ally完成签到,获得积分10
32秒前
star应助汪寒采纳,获得10
33秒前
33秒前
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073