Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution

强化学习 冲突解决 趋同(经济学) 计算机科学 人工智能 航向(导航) 物理定律 马尔可夫决策过程 人工神经网络 机器学习 数学 物理 工程类 马尔可夫过程 航空航天工程 统计 量子力学 政治学 法学 经济 经济增长
作者
Peng Zhao,Yongming Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 8288-8301 被引量:29
标识
DOI:10.1109/tits.2021.3077572
摘要

A novel method for aircraft conflict resolution in air traffic management (ATM) using physics informed deep reinforcement learning (RL) is proposed. The motivation is to integrate prior physics understanding and model in the learning algorithm to facilitate the optimal policy searching and to present human-explainable results for display and decision-making. First, the information of intruders' quantity, speeds, heading angles, and positions are integrated into an image using the solution space diagram (SSD), which is used in the ATM for conflict detection and mitigation. The SSD serves as the prior physics knowledge from the ATM domain which is the input features for learning. A convolution neural network is used with the SSD images for the deep reinforcement learning. Next, an actor-critic network is constructed to learn conflict resolution policy. Several numerical examples are used to illustrate the proposed methodology. Both discrete and continuous RL are explored using the proposed concept of physics informed learning. A detailed comparison and discussion of the proposed algorithm and classical RL-based conflict resolution is given. The proposed approach is able to handle arbitrary number of intruders and also shows faster convergence behavior due to the encoded prior physics understanding. In addition, the learned optimal policy is also beneficial for proper display to support decision-making. Several major conclusions and future work are presented based on the current investigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wen关闭了wen文献求助
刚刚
ddddd发布了新的文献求助10
刚刚
YYqx1_嘻发布了新的文献求助10
1秒前
mono完成签到,获得积分10
1秒前
小马甲应助myx采纳,获得10
1秒前
1秒前
稳重小蕾发布了新的文献求助30
1秒前
庚午发布了新的文献求助10
1秒前
WILAY889完成签到,获得积分10
2秒前
欢--完成签到,获得积分10
2秒前
鱼鱼鱼发布了新的文献求助10
2秒前
hussarzcz发布了新的文献求助10
3秒前
Quinn完成签到,获得积分10
3秒前
揉揉发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
T1aNer299发布了新的文献求助10
5秒前
AYF完成签到,获得积分10
5秒前
1397发布了新的文献求助10
5秒前
科研通AI6应助叽里咕噜噜采纳,获得10
5秒前
5秒前
Snoopy_Swan完成签到,获得积分10
5秒前
果粒登完成签到 ,获得积分10
6秒前
淡淡的大雁完成签到,获得积分10
6秒前
7秒前
ruiruirui完成签到 ,获得积分10
7秒前
7秒前
8秒前
纯真电灯胆关注了科研通微信公众号
9秒前
量子星尘发布了新的文献求助10
9秒前
达利园发布了新的文献求助10
9秒前
myx完成签到,获得积分20
9秒前
zhtgang完成签到,获得积分10
10秒前
10秒前
lizl应助Hoolyshit采纳,获得10
10秒前
yufanhui应助风趣灵珊采纳,获得10
10秒前
10秒前
wanci应助小吉麻麻采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490