Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution

强化学习 冲突解决 趋同(经济学) 计算机科学 人工智能 航向(导航) 物理定律 马尔可夫决策过程 人工神经网络 机器学习 数学 物理 工程类 马尔可夫过程 航空航天工程 政治学 法学 经济 统计 量子力学 经济增长
作者
Peng Zhao,Yongming Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 8288-8301 被引量:29
标识
DOI:10.1109/tits.2021.3077572
摘要

A novel method for aircraft conflict resolution in air traffic management (ATM) using physics informed deep reinforcement learning (RL) is proposed. The motivation is to integrate prior physics understanding and model in the learning algorithm to facilitate the optimal policy searching and to present human-explainable results for display and decision-making. First, the information of intruders' quantity, speeds, heading angles, and positions are integrated into an image using the solution space diagram (SSD), which is used in the ATM for conflict detection and mitigation. The SSD serves as the prior physics knowledge from the ATM domain which is the input features for learning. A convolution neural network is used with the SSD images for the deep reinforcement learning. Next, an actor-critic network is constructed to learn conflict resolution policy. Several numerical examples are used to illustrate the proposed methodology. Both discrete and continuous RL are explored using the proposed concept of physics informed learning. A detailed comparison and discussion of the proposed algorithm and classical RL-based conflict resolution is given. The proposed approach is able to handle arbitrary number of intruders and also shows faster convergence behavior due to the encoded prior physics understanding. In addition, the learned optimal policy is also beneficial for proper display to support decision-making. Several major conclusions and future work are presented based on the current investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静的孤萍完成签到,获得积分10
1秒前
1秒前
lyz666发布了新的文献求助10
1秒前
liuxl发布了新的文献求助10
2秒前
smile完成签到,获得积分20
3秒前
Shuo Yang完成签到,获得积分10
3秒前
3秒前
伊酒发布了新的文献求助10
3秒前
蓉儿完成签到 ,获得积分10
4秒前
动人的梦之完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
小小爱吃百香果完成签到,获得积分20
7秒前
薪炭林应助空心采纳,获得30
7秒前
宫宛儿完成签到,获得积分10
7秒前
smile发布了新的文献求助10
8秒前
永远少年发布了新的文献求助10
9秒前
跳跃完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
10秒前
sansan发布了新的文献求助10
10秒前
tassssadar完成签到,获得积分10
11秒前
11秒前
通辽小判官完成签到,获得积分10
12秒前
曲蔚然发布了新的文献求助30
13秒前
liuxl完成签到,获得积分10
13秒前
长隆完成签到 ,获得积分10
15秒前
15秒前
852应助YukiXu采纳,获得10
16秒前
16秒前
jijizz发布了新的文献求助10
16秒前
yyyyy发布了新的文献求助10
16秒前
zhappy发布了新的文献求助20
16秒前
17秒前
稳重的八宝粥完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808