Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution

强化学习 冲突解决 趋同(经济学) 计算机科学 人工智能 航向(导航) 物理定律 马尔可夫决策过程 人工神经网络 机器学习 数学 物理 工程类 马尔可夫过程 航空航天工程 政治学 法学 经济 统计 量子力学 经济增长
作者
Peng Zhao,Yongming Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 8288-8301 被引量:29
标识
DOI:10.1109/tits.2021.3077572
摘要

A novel method for aircraft conflict resolution in air traffic management (ATM) using physics informed deep reinforcement learning (RL) is proposed. The motivation is to integrate prior physics understanding and model in the learning algorithm to facilitate the optimal policy searching and to present human-explainable results for display and decision-making. First, the information of intruders' quantity, speeds, heading angles, and positions are integrated into an image using the solution space diagram (SSD), which is used in the ATM for conflict detection and mitigation. The SSD serves as the prior physics knowledge from the ATM domain which is the input features for learning. A convolution neural network is used with the SSD images for the deep reinforcement learning. Next, an actor-critic network is constructed to learn conflict resolution policy. Several numerical examples are used to illustrate the proposed methodology. Both discrete and continuous RL are explored using the proposed concept of physics informed learning. A detailed comparison and discussion of the proposed algorithm and classical RL-based conflict resolution is given. The proposed approach is able to handle arbitrary number of intruders and also shows faster convergence behavior due to the encoded prior physics understanding. In addition, the learned optimal policy is also beneficial for proper display to support decision-making. Several major conclusions and future work are presented based on the current investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
庄彧完成签到 ,获得积分10
1秒前
luca发布了新的文献求助200
1秒前
文静紫霜完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
Ssyong发布了新的文献求助10
6秒前
6秒前
superworm1发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
8秒前
lane完成签到,获得积分20
10秒前
缥缈剑愁发布了新的文献求助10
11秒前
缥缈剑愁发布了新的文献求助10
11秒前
缥缈剑愁发布了新的文献求助10
12秒前
缥缈剑愁发布了新的文献求助10
12秒前
缥缈剑愁发布了新的文献求助10
12秒前
缥缈剑愁发布了新的文献求助10
12秒前
缥缈剑愁发布了新的文献求助10
12秒前
缥缈剑愁发布了新的文献求助10
12秒前
缥缈剑愁发布了新的文献求助10
13秒前
缥缈剑愁发布了新的文献求助10
13秒前
14秒前
bird完成签到,获得积分10
15秒前
16秒前
1874发布了新的文献求助10
17秒前
19秒前
caibai发布了新的文献求助10
20秒前
20秒前
江余怅晚发布了新的文献求助10
23秒前
小武wwwww完成签到,获得积分10
25秒前
25秒前
psycho完成签到,获得积分10
25秒前
小萝卜完成签到,获得积分10
25秒前
琉璃苣应助和谐为上采纳,获得10
25秒前
1874完成签到,获得积分20
27秒前
完美世界应助lane采纳,获得10
29秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043