Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution

强化学习 冲突解决 趋同(经济学) 计算机科学 人工智能 航向(导航) 物理定律 马尔可夫决策过程 人工神经网络 机器学习 数学 物理 工程类 马尔可夫过程 航空航天工程 统计 量子力学 政治学 法学 经济 经济增长
作者
Peng Zhao,Yongming Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 8288-8301 被引量:29
标识
DOI:10.1109/tits.2021.3077572
摘要

A novel method for aircraft conflict resolution in air traffic management (ATM) using physics informed deep reinforcement learning (RL) is proposed. The motivation is to integrate prior physics understanding and model in the learning algorithm to facilitate the optimal policy searching and to present human-explainable results for display and decision-making. First, the information of intruders' quantity, speeds, heading angles, and positions are integrated into an image using the solution space diagram (SSD), which is used in the ATM for conflict detection and mitigation. The SSD serves as the prior physics knowledge from the ATM domain which is the input features for learning. A convolution neural network is used with the SSD images for the deep reinforcement learning. Next, an actor-critic network is constructed to learn conflict resolution policy. Several numerical examples are used to illustrate the proposed methodology. Both discrete and continuous RL are explored using the proposed concept of physics informed learning. A detailed comparison and discussion of the proposed algorithm and classical RL-based conflict resolution is given. The proposed approach is able to handle arbitrary number of intruders and also shows faster convergence behavior due to the encoded prior physics understanding. In addition, the learned optimal policy is also beneficial for proper display to support decision-making. Several major conclusions and future work are presented based on the current investigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yuan完成签到,获得积分10
1秒前
爆米花应助腿毛没啦采纳,获得30
1秒前
满意的初南完成签到 ,获得积分10
1秒前
科研通AI6应助小瓶子采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
快乐书桃发布了新的文献求助10
4秒前
BareBear应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得30
4秒前
5秒前
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
延胡索发布了新的文献求助10
5秒前
11111应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
染东完成签到,获得积分10
5秒前
5秒前
乐乐应助Superan采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
拉普拉斯妖完成签到,获得积分10
5秒前
Liusy应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
光亮向卉应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
情怀应助科研通管家采纳,获得30
6秒前
大个应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526