Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution

强化学习 冲突解决 趋同(经济学) 计算机科学 人工智能 航向(导航) 物理定律 马尔可夫决策过程 人工神经网络 机器学习 数学 物理 工程类 马尔可夫过程 航空航天工程 统计 量子力学 政治学 法学 经济 经济增长
作者
Peng Zhao,Yongming Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 8288-8301 被引量:29
标识
DOI:10.1109/tits.2021.3077572
摘要

A novel method for aircraft conflict resolution in air traffic management (ATM) using physics informed deep reinforcement learning (RL) is proposed. The motivation is to integrate prior physics understanding and model in the learning algorithm to facilitate the optimal policy searching and to present human-explainable results for display and decision-making. First, the information of intruders' quantity, speeds, heading angles, and positions are integrated into an image using the solution space diagram (SSD), which is used in the ATM for conflict detection and mitigation. The SSD serves as the prior physics knowledge from the ATM domain which is the input features for learning. A convolution neural network is used with the SSD images for the deep reinforcement learning. Next, an actor-critic network is constructed to learn conflict resolution policy. Several numerical examples are used to illustrate the proposed methodology. Both discrete and continuous RL are explored using the proposed concept of physics informed learning. A detailed comparison and discussion of the proposed algorithm and classical RL-based conflict resolution is given. The proposed approach is able to handle arbitrary number of intruders and also shows faster convergence behavior due to the encoded prior physics understanding. In addition, the learned optimal policy is also beneficial for proper display to support decision-making. Several major conclusions and future work are presented based on the current investigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助yyanxuemin919采纳,获得10
1秒前
daisyyy完成签到,获得积分10
1秒前
打打应助哈哈哈哈采纳,获得10
4秒前
科研通AI6应助ivy采纳,获得10
6秒前
6秒前
8秒前
情怀应助Mok采纳,获得10
10秒前
11秒前
12秒前
xun完成签到,获得积分10
13秒前
我是科研狗完成签到,获得积分10
14秒前
1280065188完成签到,获得积分20
15秒前
爆米花应助wen采纳,获得10
15秒前
纪予舟发布了新的文献求助10
15秒前
15秒前
15秒前
qingzhiwu完成签到,获得积分10
15秒前
16秒前
psylan应助impending采纳,获得10
16秒前
yyanxuemin919发布了新的文献求助10
18秒前
oon完成签到,获得积分10
19秒前
20秒前
20秒前
小熊完成签到,获得积分10
20秒前
20秒前
大模型应助喜悦的如娆采纳,获得10
21秒前
pluto应助yyy采纳,获得10
21秒前
晨丶完成签到,获得积分10
21秒前
纯真万言完成签到,获得积分10
22秒前
奕苼完成签到 ,获得积分10
22秒前
Owen应助甜蜜弱采纳,获得10
22秒前
susan完成签到,获得积分10
23秒前
Mok发布了新的文献求助10
25秒前
一棵树完成签到,获得积分10
26秒前
27秒前
29秒前
健忘可愁应助疯狂的聋五采纳,获得20
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
Hello应助科研通管家采纳,获得10
32秒前
xzy998应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841