Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution

强化学习 冲突解决 趋同(经济学) 计算机科学 人工智能 航向(导航) 物理定律 马尔可夫决策过程 人工神经网络 机器学习 数学 物理 工程类 马尔可夫过程 航空航天工程 统计 量子力学 政治学 法学 经济 经济增长
作者
Peng Zhao,Yongming Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 8288-8301 被引量:29
标识
DOI:10.1109/tits.2021.3077572
摘要

A novel method for aircraft conflict resolution in air traffic management (ATM) using physics informed deep reinforcement learning (RL) is proposed. The motivation is to integrate prior physics understanding and model in the learning algorithm to facilitate the optimal policy searching and to present human-explainable results for display and decision-making. First, the information of intruders' quantity, speeds, heading angles, and positions are integrated into an image using the solution space diagram (SSD), which is used in the ATM for conflict detection and mitigation. The SSD serves as the prior physics knowledge from the ATM domain which is the input features for learning. A convolution neural network is used with the SSD images for the deep reinforcement learning. Next, an actor-critic network is constructed to learn conflict resolution policy. Several numerical examples are used to illustrate the proposed methodology. Both discrete and continuous RL are explored using the proposed concept of physics informed learning. A detailed comparison and discussion of the proposed algorithm and classical RL-based conflict resolution is given. The proposed approach is able to handle arbitrary number of intruders and also shows faster convergence behavior due to the encoded prior physics understanding. In addition, the learned optimal policy is also beneficial for proper display to support decision-making. Several major conclusions and future work are presented based on the current investigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
刚刚
山山完成签到,获得积分10
刚刚
1秒前
文章大发完成签到,获得积分10
1秒前
我是老大应助LIU采纳,获得10
1秒前
1秒前
2秒前
尊敬安荷完成签到,获得积分10
2秒前
2秒前
云上人发布了新的文献求助10
2秒前
皇甫成发布了新的文献求助10
3秒前
大个应助七七采纳,获得10
3秒前
4秒前
4秒前
田様应助Anjou采纳,获得10
4秒前
RR发布了新的文献求助10
4秒前
5秒前
5秒前
小森发布了新的文献求助10
5秒前
牙牙完成签到,获得积分10
5秒前
5秒前
6秒前
宇宙无敌完成签到 ,获得积分10
6秒前
机灵的静枫完成签到,获得积分10
6秒前
贪玩板凳发布了新的文献求助10
6秒前
Always62442发布了新的文献求助10
6秒前
6秒前
Aurora1011完成签到,获得积分10
6秒前
星辰大海应助sunyanghu369采纳,获得10
7秒前
7秒前
HCT发布了新的文献求助10
8秒前
qi完成签到,获得积分10
8秒前
鱼鱼发布了新的文献求助10
9秒前
万能图书馆应助儒雅大白采纳,获得10
9秒前
9秒前
小北发布了新的文献求助10
9秒前
Ambi完成签到,获得积分20
9秒前
9秒前
10秒前
冰冰完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919