铰链
执行机构
正方体卫星
刚度
形状记忆合金
职位(财务)
机械工程
能量收集
抗弯刚度
工作(物理)
结构工程
计算机科学
工程类
能量(信号处理)
航空航天工程
电气工程
物理
人工智能
经济
量子力学
卫星
财务
作者
Oleg Testoni,Thomas S. Lumpe,Jian-Lin Huang,Marius A. Wagner,Sampada Bodkhe,Zhenishbek Zhakypov,Ralph Spolenak,Jamie Paik,Paolo Ermanni,Luis Muñoz,Kristina Shea
标识
DOI:10.1088/1361-665x/ac01fa
摘要
This paper presents the proof-of-concept for a 4D printed active compliant hinge with a selectively variable stiffness for the deployment and reorientation of satellite appendages. We use 4D printing to create an active compliant hinge capable of bending to a given angular position, holding the position without consuming energy and reorienting itself multiple times in a slow and controlled manner without using rigid mechanisms and, therefore, requiring no lubrication. The deployment and the reorientation of the hinge are achieved by exploiting thermally induced stiffness modulation of one of the constituting materials and two antagonistic shape memory alloy actuators. The hinge is specifically designed for the case study of a 6U CubeSat with two orientable solar panels. In this work, we first explain the working principle of the hinge and propose three different actuation strategies to increase the energy collection of the considered CubeSat. Second, we describe the specific functional and geometric requirements of the hinge, the resulting design and the fabricated functional prototype. The latter is tested in a standard laboratory environment to measure the range of motion, the energy consumption and the actuation time. Finally, the feasibility of the three proposed actuation strategies is evaluated considering the corresponding net increase in collected energy. The results show that the hinge is compatible with the stowing requirements and capable of achieving maximum angular positions larger than 90° in both directions and holding any intermediate position with an accuracy of less than 3°. The three actuation strategies considered lead, in a standard laboratory environment, to an increase in energy generation between 54% and 72%.
科研通智能强力驱动
Strongly Powered by AbleSci AI