亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Olfactory encoding within the insect antennal lobe: The emergence and role of higher order temporal correlations in the dynamics of antennal lobe spiking activity

触角叶 颞叶 蘑菇体 蝗虫 气味 生物 神经科学 昆虫 神经编码 嗅觉系统 透视图(图形) 生物系统 计算机科学 人工智能 生态学 黑腹果蝇 癫痫 生物化学 基因
作者
Mainak Patel,Aaditya V. Rangan
出处
期刊:Journal of Theoretical Biology [Elsevier]
卷期号:522: 110700-110700 被引量:8
标识
DOI:10.1016/j.jtbi.2021.110700
摘要

In this review, we focus on the antennal lobe (AL) of three insect species – the fruit fly, sphinx moth, and locust. We first review the experimentally elucidated anatomy and physiology of the early olfactory system of each species; empirical studies of AL activity, however, often focus on assessing firing rates (averaged over time scales of about 100 ms), and hence the AL odor code is often analyzed in terms of a temporally evolving vector of firing rates. However, such a perspective necessarily misses the possibility of higher order temporal correlations in spiking activity within a single cell and across multiple cells over shorter time scales (of about 10 ms). Hence, we then review our prior theoretical work, where we constructed biophysically detailed, species-specific AL models within the fly, moth, and locust, finding that in each case higher order temporal correlations in spiking naturally emerge from model dynamics (i.e., without a prioriincorporation of elements designed to produce correlated activity). We therefore use our theoretical work to argue the perspective that temporal correlations in spiking over short time scales, which have received little experimental attention to-date, may provide valuable coding dimensions (complementing the coding dimensions provided by the vector of firing rates) that nature has exploited in the encoding of odors within the AL. We further argue that, if the AL does indeed utilize temporally correlated activity to represent odor information, such an odor code could be naturally and easily deciphered within the Mushroom Body.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
FashionBoy应助我有一壶酒采纳,获得10
2秒前
Plikestudy发布了新的文献求助30
4秒前
科研通AI6.1应助Okanryo采纳,获得10
4秒前
6秒前
丸子完成签到 ,获得积分10
8秒前
10秒前
11秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
科目三应助LY采纳,获得10
17秒前
17秒前
xiang发布了新的文献求助10
18秒前
yangzai完成签到 ,获得积分0
19秒前
alva发布了新的文献求助10
20秒前
katata完成签到 ,获得积分10
22秒前
24秒前
小蘑菇应助心灵美猎豹采纳,获得10
25秒前
AEGUO完成签到 ,获得积分10
28秒前
29秒前
29秒前
Criminology34应助后来采纳,获得10
29秒前
科研通AI6.1应助aaa采纳,获得10
31秒前
妖妖灵发布了新的文献求助10
35秒前
兜兜发布了新的文献求助10
35秒前
38秒前
桐桐应助小鱼采纳,获得10
39秒前
田様应助我有一壶酒采纳,获得10
39秒前
linyanling完成签到,获得积分20
40秒前
医学僧也想成为科主任完成签到,获得积分20
41秒前
栗子完成签到,获得积分10
42秒前
兜兜完成签到,获得积分10
44秒前
Splaink完成签到 ,获得积分10
46秒前
鲁成危发布了新的文献求助10
47秒前
47秒前
47秒前
yuyan应助科研通管家采纳,获得10
47秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779791
求助须知:如何正确求助?哪些是违规求助? 5649870
关于积分的说明 15452355
捐赠科研通 4910851
什么是DOI,文献DOI怎么找? 2642982
邀请新用户注册赠送积分活动 1590635
关于科研通互助平台的介绍 1545094