Identification of Novel Kinase–Transcription Factor–mRNA–miRNA Regulatory Network in Nasopharyngeal Carcinoma by Bioinformatics Analysis

小RNA 基因 鼻咽癌 转录因子 生物 生物信息学 基因调控网络 计算生物学 小桶 基因表达 遗传学 医学 内科学 放射治疗
作者
Li Gao,Lei Zhou,Xinsheng Huang
出处
期刊:International Journal of General Medicine [Dove Medical Press]
卷期号:Volume 14: 7453-7469 被引量:1
标识
DOI:10.2147/ijgm.s327657
摘要

Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors of the head and neck. This study aimed to investigate the crucial genes and regulatory networks involved in the carcinogenesis of NPC using a bioinformatics approach.Five mRNA and two miRNA expression datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and miRNAs (DEMs) between NPC and normal samples were analyzed using R software. The WebGestalt tool was used for functional enrichment analysis, and protein-protein interaction (PPI) network analysis of DEGs was performed using STRING database. Transcription factors (TFs) were predicted using TRRUST and Transcriptional Regulatory Element Database (TRED). Kinases were identified using X2Kgui. The miRNAs of DEGs were predicted using miRWalk database. A kinase-TF-mRNA-miRNA integrated network was constructed, and hub nodes were selected. The hub genes were validated using NPC datasets from the GEO and Oncomine databases. Finally, candidate small-molecule agents were predicted using CMap.A total of 122 DEGs and 44 DEMs were identified. DEGs were associated with the immune response, leukocyte activation, endoplasmic reticulum stress in GO analysis, and the NF-κB signaling pathway in KEGG analysis. Four significant modules were identified using PPI network analysis. Subsequently, 26 TFs, 73 kinases, and 2499 miRNAs were predicted. The predicted miRNAs were cross-referenced with DEMs, and seven overlapping miRNAs were selected. In the kinase-TF-mRNA-miRNA integrated network, eight genes (PTGS2, FN1, MMP1, PLAU, MMP3, CD19, BMP2, and PIGR) were identified as hub genes. Hub genes were validated with consistent results, indicating the reliability of our findings. Finally, six candidate small-molecule agents (phenoxybenzamine, luteolin, thioguanosine, reserpine, blebbistatin, and camptothecin) were predicted.We identified DEGs and an NPC regulatory network involving kinases, TFs, mRNAs, and miRNAs, which might provide promising insight into the pathogenesis, treatment, and prognosis of NPC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AA完成签到,获得积分10
1秒前
苏我入鹿完成签到,获得积分10
1秒前
juphen2发布了新的文献求助10
2秒前
3秒前
Akim应助御史采纳,获得10
4秒前
支雨泽发布了新的文献求助10
4秒前
阿凉完成签到,获得积分10
4秒前
文艺聪健完成签到,获得积分10
5秒前
水果完成签到,获得积分10
5秒前
5秒前
阔达的初夏完成签到,获得积分10
5秒前
6秒前
大蘑菇炒小蘑菇完成签到,获得积分10
7秒前
粥粥粥发布了新的文献求助10
10秒前
星辰大海应助LongHua采纳,获得10
11秒前
59完成签到 ,获得积分10
11秒前
Owen应助车宇采纳,获得10
11秒前
藏锋守拙123完成签到,获得积分10
12秒前
不想读书完成签到,获得积分10
13秒前
wenyliang完成签到,获得积分10
13秒前
14秒前
14秒前
曾经凌萱完成签到,获得积分10
14秒前
涛涛完成签到,获得积分10
15秒前
蜗牛完成签到,获得积分10
17秒前
AryaZzz完成签到 ,获得积分10
18秒前
体贴的青烟完成签到,获得积分10
19秒前
甜甜千兰完成签到,获得积分10
19秒前
糯米饭完成签到 ,获得积分10
19秒前
NikiJu完成签到 ,获得积分10
20秒前
小呆呆完成签到 ,获得积分10
20秒前
20秒前
SciGPT应助huayi采纳,获得10
20秒前
20秒前
huang发布了新的文献求助10
21秒前
Wang发布了新的文献求助10
21秒前
23秒前
Dream完成签到 ,获得积分10
23秒前
cxzsci发布了新的文献求助10
23秒前
爆米花应助司予采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688574
关于积分的说明 14854759
捐赠科研通 4693983
什么是DOI,文献DOI怎么找? 2540888
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806