Hierarchical Loop Closure Detection for Long-term Visual SLAM with Semantic-Geometric Descriptors

同时定位和映射 计算机科学 词汇 结束语(心理学) 语义学(计算机科学) 人工智能 For循环 特征(语言学) 期限(时间) 特征提取 可视化 计算机视觉 模式识别(心理学) 循环(图论) 机器人 移动机器人 数学 语言学 哲学 物理 组合数学 量子力学 经济 程序设计语言 市场经济
作者
Gaurav Singh,Meiqing Wu,Siew-Kei Lam,Do Van Minh
标识
DOI:10.1109/itsc48978.2021.9564866
摘要

Modern visual Simultaneous Localization and Mapping (SLAM) systems rely on loop closure detection methods for correcting drifts in maps and poses. Existing loop closure detection methods mainly employ conventional feature descriptors to create vocabulary for describing places using bag-of-words (BOW). Such methods do not perform well in long-term SLAM applications as the scene content may change over time due to the presence of dynamic objects, even though the locations are revisited with the same viewpoint. This work enhances the loop closure detection capability of long-term visual SLAM by reducing the number of false matches through the use of location semantics. We extend a semantic visual SLAM framework to build compact global semantic-geometric location descriptors and local semantic vocabulary trees, by leveraging on the already available features and semantics. The local semantic vocabulary trees support incremental vocabulary learning, which is well-suited for long-term SLAM scenarios where the scenes encountered are not known beforehand. A novel hierarchical place recognition method that leverages the global and local location semantics is proposed to enable fast and accurate loop closure detection. The proposed method outperforms recent state-of-the-art methods (i.e., FABMAP2, SeqSLAM, iBOW-LCD, and HTMap) on all datasets considered (i.e., KITTI, Synthia, and CBD), with highest loop closure detection accuracy and lowest query time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chriscda完成签到 ,获得积分10
刚刚
1秒前
1秒前
ccm应助不是吴彦祖喔采纳,获得10
2秒前
3秒前
田様应助听白采纳,获得10
4秒前
小蘑菇应助摆烂蛋挞采纳,获得30
4秒前
在水一方应助一篇大paper采纳,获得10
5秒前
上官若男应助LT采纳,获得10
5秒前
xiaochi发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
隐形曼青应助plll采纳,获得10
7秒前
7秒前
holy完成签到,获得积分20
8秒前
FashionBoy应助明月清风采纳,获得10
8秒前
8秒前
9秒前
9秒前
holy发布了新的文献求助10
10秒前
11秒前
两袖清风发布了新的文献求助10
13秒前
13秒前
Qiu发布了新的文献求助10
14秒前
wanci应助holy采纳,获得10
15秒前
Negan完成签到,获得积分10
15秒前
浮游应助xiaochi采纳,获得10
15秒前
幸运鹅完成签到,获得积分10
16秒前
贤惠的谷秋完成签到 ,获得积分10
16秒前
17秒前
龙月发布了新的文献求助30
18秒前
心灵美悟空完成签到,获得积分10
19秒前
19秒前
22秒前
桐桐应助神勇的广缘采纳,获得10
23秒前
修越完成签到 ,获得积分10
23秒前
大个应助Akjan采纳,获得10
23秒前
violin发布了新的文献求助30
23秒前
23秒前
23秒前
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125515
求助须知:如何正确求助?哪些是违规求助? 4329288
关于积分的说明 13490854
捐赠科研通 4164202
什么是DOI,文献DOI怎么找? 2282786
邀请新用户注册赠送积分活动 1283874
关于科研通互助平台的介绍 1223196