Multimodal MRI Reconstruction Assisted With Spatial Alignment Network

计算机科学 人工智能 计算机视觉 迭代重建 医学影像学 实时核磁共振成像 磁共振成像 放射科 医学
作者
Kai Xuan,Lei Xiang,Xiaoqian Huang,Lichi Zhang,Shu Liao,Dinggang Shen,Qian Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (9): 2499-2509 被引量:19
标识
DOI:10.1109/tmi.2022.3164050
摘要

In clinical practice, multi-modal magnetic resonance imaging (MRI) with different contrasts is usually acquired in a single study to assess different properties of the same region of interest in the human body. The whole acquisition process can be accelerated by having one or more modalities under-sampled in the ${k}$ -space. Recent research has shown that, considering the redundancy between different modalities, a target MRI modality under-sampled in the ${k}$ -space can be more efficiently reconstructed with a fully-sampled reference MRI modality. However, we find that the performance of the aforementioned multi-modal reconstruction can be negatively affected by subtle spatial misalignment between different modalities, which is actually common in clinical practice. In this paper, we improve the quality of multi-modal reconstruction by compensating for such spatial misalignment with a spatial alignment network. First, our spatial alignment network estimates the displacement between the fully-sampled reference and the under-sampled target images, and warps the reference image accordingly. Then, the aligned fully-sampled reference image joins the multi-modal reconstruction of the under-sampled target image. Also, considering the contrast difference between the target and reference images, we have designed a cross-modality-synthesis-based registration loss in combination with the reconstruction loss, to jointly train the spatial alignment network and the reconstruction network. The experiments on both clinical MRI and multi-coil ${k}$ -space raw data demonstrate the superiority and robustness of the multi-modal MRI reconstruction empowered with our spatial alignment network. Our code is publicly available at https://github.com/woxuankai/SpatialAlignmentNetwork .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muomuo发布了新的文献求助10
1秒前
湘华完成签到,获得积分10
1秒前
渝州人发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
开放鸵鸟发布了新的文献求助10
3秒前
3秒前
温暖以蓝完成签到,获得积分20
3秒前
WTF完成签到,获得积分10
4秒前
花花花花完成签到,获得积分10
4秒前
franklvlei发布了新的文献求助10
5秒前
丘比特应助湘华采纳,获得10
6秒前
6秒前
AIA7完成签到,获得积分10
6秒前
towerman完成签到,获得积分10
7秒前
花花花花发布了新的文献求助10
8秒前
8秒前
xiaoziyi666发布了新的文献求助10
8秒前
muomuo完成签到,获得积分10
8秒前
8秒前
eli完成签到,获得积分10
9秒前
ZL发布了新的文献求助10
9秒前
Jason完成签到,获得积分10
9秒前
10秒前
10秒前
朴实的乐天完成签到,获得积分10
10秒前
11秒前
towerman发布了新的文献求助10
11秒前
科研通AI5应助愤怒的寄琴采纳,获得10
11秒前
搜集达人应助起司嗯采纳,获得30
11秒前
jjgod完成签到,获得积分10
12秒前
kilig完成签到 ,获得积分10
12秒前
12秒前
good发布了新的文献求助10
12秒前
可靠从云发布了新的文献求助30
12秒前
安静的从安完成签到,获得积分10
13秒前
了了完成签到,获得积分10
13秒前
烟花应助phylicia采纳,获得10
14秒前
讲你ing发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762