Multimodal MRI Reconstruction Assisted With Spatial Alignment Network

计算机科学 人工智能 计算机视觉 迭代重建 医学影像学 实时核磁共振成像 磁共振成像 放射科 医学
作者
Kai Xuan,Lei Xiang,Xiaoqian Huang,Lichi Zhang,Shu Liao,Dinggang Shen,Qian Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (9): 2499-2509 被引量:30
标识
DOI:10.1109/tmi.2022.3164050
摘要

In clinical practice, multi-modal magnetic resonance imaging (MRI) with different contrasts is usually acquired in a single study to assess different properties of the same region of interest in the human body. The whole acquisition process can be accelerated by having one or more modalities under-sampled in the ${k}$ -space. Recent research has shown that, considering the redundancy between different modalities, a target MRI modality under-sampled in the ${k}$ -space can be more efficiently reconstructed with a fully-sampled reference MRI modality. However, we find that the performance of the aforementioned multi-modal reconstruction can be negatively affected by subtle spatial misalignment between different modalities, which is actually common in clinical practice. In this paper, we improve the quality of multi-modal reconstruction by compensating for such spatial misalignment with a spatial alignment network. First, our spatial alignment network estimates the displacement between the fully-sampled reference and the under-sampled target images, and warps the reference image accordingly. Then, the aligned fully-sampled reference image joins the multi-modal reconstruction of the under-sampled target image. Also, considering the contrast difference between the target and reference images, we have designed a cross-modality-synthesis-based registration loss in combination with the reconstruction loss, to jointly train the spatial alignment network and the reconstruction network. The experiments on both clinical MRI and multi-coil ${k}$ -space raw data demonstrate the superiority and robustness of the multi-modal MRI reconstruction empowered with our spatial alignment network. Our code is publicly available at https://github.com/woxuankai/SpatialAlignmentNetwork .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助耿耿采纳,获得10
刚刚
dyy123发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
周亚男完成签到,获得积分10
1秒前
1秒前
搜集达人应助吉祥采纳,获得10
1秒前
无极微光应助HY采纳,获得20
1秒前
能干寻芹完成签到,获得积分10
2秒前
HAN发布了新的文献求助10
3秒前
浮游应助告元采纳,获得10
3秒前
静静发布了新的文献求助10
3秒前
123发布了新的文献求助10
4秒前
yy完成签到,获得积分10
4秒前
4秒前
默默的微笑完成签到,获得积分10
4秒前
6秒前
6秒前
科研通AI6应助波恰采纳,获得10
6秒前
林林林完成签到,获得积分10
6秒前
土豆不吃鱼完成签到,获得积分20
7秒前
时光静好应助归尘采纳,获得10
7秒前
辛勤的刺猬完成签到 ,获得积分10
7秒前
迷人的天抒完成签到 ,获得积分10
7秒前
传奇3应助waoller1采纳,获得10
8秒前
yzz完成签到,获得积分10
8秒前
8秒前
123完成签到,获得积分20
9秒前
yy发布了新的文献求助10
10秒前
花七童完成签到,获得积分10
10秒前
11秒前
林林林发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
李萌完成签到,获得积分10
12秒前
hyx完成签到,获得积分10
13秒前
HAN完成签到,获得积分10
13秒前
ChatGPT发布了新的文献求助10
14秒前
Cathy发布了新的文献求助10
14秒前
古藤完成签到 ,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941797
求助须知:如何正确求助?哪些是违规求助? 4207663
关于积分的说明 13078817
捐赠科研通 3986706
什么是DOI,文献DOI怎么找? 2182648
邀请新用户注册赠送积分活动 1198336
关于科研通互助平台的介绍 1110591