Premature beats detection based on a novel convolutional neural network

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 心电图 人工神经网络 信号(编程语言) 深度学习 语音识别 心脏病学 医学 程序设计语言
作者
Jingying Yang,Wenjie Cai,Ming-Jie Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:42 (7): 075003-075003 被引量:8
标识
DOI:10.1088/1361-6579/ac0e82
摘要

Objective.Automatic detection of premature beats on long electrocardiogram (ECG) recordings is of great significance for clinical diagnosis. In this paper, we propose a novel deep learning model, the ECGDet, to detect premature beats, including premature ventricular contractions (PVCs) and supraventricular premature beats (SPBs) on single-lead long-term ECGs.Approach.The ECGDet is proposed based on a convolutional neural network and squeeze-and-excitation network. It outputs the probabilities that the ECG samples belong to a premature contraction. Non-max suppression was used to select the most appropriate locations for the premature beats. The ECGDet was trained and tested on the MIT-BIH arrhythmia database (MITDB) using a five-fold cross-validation approach. A novel loss calculation method was introduced in the model training process. Then it was tuned and further tested on the China Physiological Signal Challenge (2020) database (CPSCDB).Main results.The results showed that the average F1 value of PVC detection was 92.6%, while that of SPB detection was 72.2% on MITDB. The ECGDet bagged the 2nd place for PVC detection and ranked 7th place of SPB detection in the China Physiological Signal Challenge (2020).Significance.The proposed ECGDet can automatically detect premature heartbeats without manually extracting the features. This technique can be used for long-term ECG signal analysis and has potential for clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果惠完成签到,获得积分10
1秒前
ding应助姜恒采纳,获得10
2秒前
MT发布了新的文献求助200
2秒前
小王发布了新的文献求助100
2秒前
清爽老九完成签到,获得积分10
3秒前
4秒前
倪维完成签到,获得积分10
4秒前
5秒前
7秒前
8秒前
yi417发布了新的文献求助10
9秒前
9秒前
清爽老九发布了新的文献求助10
12秒前
12秒前
可靠F完成签到,获得积分10
12秒前
lz发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
猪猪hero应助pingchangxin采纳,获得10
14秒前
板凳发布了新的文献求助30
15秒前
鄢廷芮完成签到 ,获得积分10
15秒前
赵小坤堃发布了新的文献求助10
17秒前
复杂白风完成签到 ,获得积分10
17秒前
FashionBoy应助大方的自行车采纳,获得30
17秒前
pluto应助55666采纳,获得10
18秒前
yunian完成签到,获得积分10
19秒前
19秒前
Ava应助yi417采纳,获得10
20秒前
20秒前
20秒前
22秒前
22秒前
23秒前
ynchendt完成签到,获得积分10
23秒前
CipherSage应助qqq采纳,获得10
24秒前
25秒前
干冷安完成签到,获得积分20
25秒前
黄hhhhhhhh发布了新的文献求助10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602304
求助须知:如何正确求助?哪些是违规求助? 4687411
关于积分的说明 14849286
捐赠科研通 4683515
什么是DOI,文献DOI怎么找? 2539817
邀请新用户注册赠送积分活动 1506518
关于科研通互助平台的介绍 1471414