Premature beats detection based on a novel convolutional neural network

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 心电图 人工神经网络 信号(编程语言) 深度学习 语音识别 心脏病学 医学 程序设计语言
作者
Jingying Yang,Wenjie Cai,Ming-Jie Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:42 (7): 075003-075003 被引量:8
标识
DOI:10.1088/1361-6579/ac0e82
摘要

Objective.Automatic detection of premature beats on long electrocardiogram (ECG) recordings is of great significance for clinical diagnosis. In this paper, we propose a novel deep learning model, the ECGDet, to detect premature beats, including premature ventricular contractions (PVCs) and supraventricular premature beats (SPBs) on single-lead long-term ECGs.Approach.The ECGDet is proposed based on a convolutional neural network and squeeze-and-excitation network. It outputs the probabilities that the ECG samples belong to a premature contraction. Non-max suppression was used to select the most appropriate locations for the premature beats. The ECGDet was trained and tested on the MIT-BIH arrhythmia database (MITDB) using a five-fold cross-validation approach. A novel loss calculation method was introduced in the model training process. Then it was tuned and further tested on the China Physiological Signal Challenge (2020) database (CPSCDB).Main results.The results showed that the average F1 value of PVC detection was 92.6%, while that of SPB detection was 72.2% on MITDB. The ECGDet bagged the 2nd place for PVC detection and ranked 7th place of SPB detection in the China Physiological Signal Challenge (2020).Significance.The proposed ECGDet can automatically detect premature heartbeats without manually extracting the features. This technique can be used for long-term ECG signal analysis and has potential for clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
山屿发布了新的文献求助30
4秒前
科研顺发布了新的文献求助10
7秒前
AIDIN完成签到 ,获得积分10
7秒前
13秒前
ding应助Bismarck采纳,获得10
17秒前
17秒前
18秒前
21秒前
科研顺完成签到,获得积分10
22秒前
23秒前
24秒前
24秒前
LDoll发布了新的文献求助10
27秒前
二猫发布了新的文献求助10
27秒前
win完成签到 ,获得积分10
27秒前
Bismarck发布了新的文献求助10
29秒前
二猫完成签到,获得积分10
34秒前
35秒前
科研通AI2S应助Bismarck采纳,获得10
36秒前
风花雪月发布了新的文献求助10
40秒前
面团发布了新的文献求助10
41秒前
彩虹糖应助科研通管家采纳,获得10
42秒前
华仔应助科研通管家采纳,获得10
42秒前
Ava应助科研通管家采纳,获得10
42秒前
隐形曼青应助科研通管家采纳,获得10
42秒前
一叶知秋应助科研通管家采纳,获得10
42秒前
胖大海完成签到,获得积分10
42秒前
香蕉觅云应助科研通管家采纳,获得10
42秒前
Mic应助科研通管家采纳,获得10
42秒前
华仔应助科研通管家采纳,获得10
42秒前
42秒前
shhoing应助科研通管家采纳,获得10
42秒前
Mic应助科研通管家采纳,获得10
42秒前
ding应助科研通管家采纳,获得10
42秒前
研友_VZG7GZ应助科研通管家采纳,获得10
42秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
Mic应助科研通管家采纳,获得10
42秒前
共享精神应助科研通管家采纳,获得10
43秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538