Premature beats detection based on a novel convolutional neural network

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 心电图 人工神经网络 信号(编程语言) 深度学习 语音识别 心脏病学 医学 程序设计语言
作者
Jingying Yang,Wenjie Cai,Ming-Jie Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:42 (7): 075003-075003 被引量:8
标识
DOI:10.1088/1361-6579/ac0e82
摘要

Objective.Automatic detection of premature beats on long electrocardiogram (ECG) recordings is of great significance for clinical diagnosis. In this paper, we propose a novel deep learning model, the ECGDet, to detect premature beats, including premature ventricular contractions (PVCs) and supraventricular premature beats (SPBs) on single-lead long-term ECGs.Approach.The ECGDet is proposed based on a convolutional neural network and squeeze-and-excitation network. It outputs the probabilities that the ECG samples belong to a premature contraction. Non-max suppression was used to select the most appropriate locations for the premature beats. The ECGDet was trained and tested on the MIT-BIH arrhythmia database (MITDB) using a five-fold cross-validation approach. A novel loss calculation method was introduced in the model training process. Then it was tuned and further tested on the China Physiological Signal Challenge (2020) database (CPSCDB).Main results.The results showed that the average F1 value of PVC detection was 92.6%, while that of SPB detection was 72.2% on MITDB. The ECGDet bagged the 2nd place for PVC detection and ranked 7th place of SPB detection in the China Physiological Signal Challenge (2020).Significance.The proposed ECGDet can automatically detect premature heartbeats without manually extracting the features. This technique can be used for long-term ECG signal analysis and has potential for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
容止发布了新的文献求助10
刚刚
..完成签到 ,获得积分10
1秒前
852应助Lucky采纳,获得10
1秒前
lemon发布了新的文献求助10
2秒前
苏卿应助service winner采纳,获得10
2秒前
3秒前
36456657应助bjyxszd采纳,获得10
3秒前
Jasper应助Wang Mu采纳,获得10
3秒前
小麒麟完成签到,获得积分10
5秒前
orixero应助shh12采纳,获得10
5秒前
暖若安阳完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
大麦迪完成签到,获得积分10
6秒前
个性的孤风完成签到,获得积分10
6秒前
春与修罗应助张东泽采纳,获得10
6秒前
畅畅完成签到,获得积分10
6秒前
脑洞疼应助Yancy采纳,获得10
7秒前
gyhk发布了新的文献求助10
7秒前
慕青应助du采纳,获得10
7秒前
8秒前
pzh完成签到 ,获得积分20
9秒前
吴雨涛发布了新的文献求助10
9秒前
超帅夫发布了新的文献求助10
10秒前
布丁果冻完成签到,获得积分10
10秒前
在水一方应助容止采纳,获得10
10秒前
长颈鹿发布了新的文献求助10
10秒前
所所应助YOLO采纳,获得10
10秒前
科研通AI5应助森sen采纳,获得10
10秒前
10秒前
here发布了新的文献求助30
11秒前
magneto发布了新的文献求助10
11秒前
马马马完成签到,获得积分10
11秒前
11秒前
善学以致用应助Zhang_BY采纳,获得10
12秒前
缪伟发布了新的文献求助10
12秒前
wy18567337203完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546676
求助须知:如何正确求助?哪些是违规求助? 3123726
关于积分的说明 9356475
捐赠科研通 2822353
什么是DOI,文献DOI怎么找? 1551369
邀请新用户注册赠送积分活动 723332
科研通“疑难数据库(出版商)”最低求助积分说明 713721