Premature beats detection based on a novel convolutional neural network

卷积神经网络 计算机科学 人工智能 模式识别(心理学)
作者
Jingying Yang,Wenjie Cai,Ming-Jie Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:42 (7): 075003-075003 被引量:12
标识
DOI:10.1088/1361-6579/ac0e82
摘要

Abstract Objective. Automatic detection of premature beats on long electrocardiogram (ECG) recordings is of great significance for clinical diagnosis. In this paper, we propose a novel deep learning model, the ECGDet, to detect premature beats, including premature ventricular contractions (PVCs) and supraventricular premature beats (SPBs) on single-lead long-term ECGs. Approach. The ECGDet is proposed based on a convolutional neural network and squeeze-and-excitation network. It outputs the probabilities that the ECG samples belong to a premature contraction. Non-max suppression was used to select the most appropriate locations for the premature beats. The ECGDet was trained and tested on the MIT-BIH arrhythmia database (MITDB) using a five-fold cross-validation approach. A novel loss calculation method was introduced in the model training process. Then it was tuned and further tested on the China Physiological Signal Challenge (2020) database (CPSCDB). Main results. The results showed that the average F1 value of PVC detection was 92.6%, while that of SPB detection was 72.2% on MITDB. The ECGDet bagged the 2nd place for PVC detection and ranked 7th place of SPB detection in the China Physiological Signal Challenge (2020). Significance. The proposed ECGDet can automatically detect premature heartbeats without manually extracting the features. This technique can be used for long-term ECG signal analysis and has potential for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
薛定谔的猫完成签到,获得积分10
2秒前
zjh33完成签到,获得积分10
2秒前
22发布了新的文献求助10
2秒前
小蘑菇应助Zzzyy采纳,获得30
2秒前
2秒前
科研通AI2S应助史淼荷采纳,获得20
2秒前
科研通AI6.1应助史淼荷采纳,获得50
2秒前
安铸发布了新的文献求助10
3秒前
3秒前
Dr_Fang完成签到,获得积分10
4秒前
毛小毛发布了新的文献求助30
4秒前
jiang完成签到,获得积分10
4秒前
ying完成签到,获得积分10
5秒前
zjh33发布了新的文献求助10
6秒前
zhangjworks完成签到,获得积分20
6秒前
xxxxxxx发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
雪白依云完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI6.1应助FEN采纳,获得10
8秒前
8秒前
万能图书馆应助轩辕十四采纳,获得10
11秒前
together完成签到,获得积分10
12秒前
愉快如天发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
tang完成签到,获得积分10
14秒前
笑点低钥匙完成签到,获得积分10
15秒前
15秒前
15秒前
孟虹沅应助Peng采纳,获得10
15秒前
许烨完成签到,获得积分10
16秒前
科研通AI6.1应助而与白醋采纳,获得10
16秒前
Lucas应助佳佳爱学习采纳,获得30
17秒前
22完成签到,获得积分10
18秒前
18秒前
18秒前
CipherSage应助MQ采纳,获得20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133