Premature beats detection based on a novel convolutional neural network

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 心电图 人工神经网络 信号(编程语言) 深度学习 语音识别 心脏病学 医学 程序设计语言
作者
Jingying Yang,Wenjie Cai,Ming-Jie Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:42 (7): 075003-075003 被引量:8
标识
DOI:10.1088/1361-6579/ac0e82
摘要

Objective.Automatic detection of premature beats on long electrocardiogram (ECG) recordings is of great significance for clinical diagnosis. In this paper, we propose a novel deep learning model, the ECGDet, to detect premature beats, including premature ventricular contractions (PVCs) and supraventricular premature beats (SPBs) on single-lead long-term ECGs.Approach.The ECGDet is proposed based on a convolutional neural network and squeeze-and-excitation network. It outputs the probabilities that the ECG samples belong to a premature contraction. Non-max suppression was used to select the most appropriate locations for the premature beats. The ECGDet was trained and tested on the MIT-BIH arrhythmia database (MITDB) using a five-fold cross-validation approach. A novel loss calculation method was introduced in the model training process. Then it was tuned and further tested on the China Physiological Signal Challenge (2020) database (CPSCDB).Main results.The results showed that the average F1 value of PVC detection was 92.6%, while that of SPB detection was 72.2% on MITDB. The ECGDet bagged the 2nd place for PVC detection and ranked 7th place of SPB detection in the China Physiological Signal Challenge (2020).Significance.The proposed ECGDet can automatically detect premature heartbeats without manually extracting the features. This technique can be used for long-term ECG signal analysis and has potential for clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yeye完成签到,获得积分10
刚刚
666JACS完成签到,获得积分20
1秒前
pan发布了新的文献求助10
1秒前
1秒前
蕲艾比比谁完成签到,获得积分10
1秒前
Ava应助上杉绘梨衣采纳,获得10
2秒前
laity完成签到,获得积分10
2秒前
缥缈蓉发布了新的文献求助10
2秒前
小马甲应助Larson采纳,获得10
2秒前
吸尘器完成签到,获得积分10
3秒前
3秒前
简单哒完成签到,获得积分10
4秒前
HOAN应助晨光采纳,获得30
4秒前
斯文败类应助伯赏元彤采纳,获得10
4秒前
0318发布了新的文献求助10
4秒前
丘比特应助Aiden采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
典雅的钥匙完成签到,获得积分10
5秒前
5秒前
5秒前
尘曦完成签到,获得积分10
5秒前
Ste完成签到,获得积分10
6秒前
陈秋禹完成签到,获得积分10
6秒前
向北游发布了新的文献求助10
6秒前
6秒前
6秒前
冰瓜完成签到,获得积分10
6秒前
dreamode完成签到,获得积分10
7秒前
Jasper应助yx采纳,获得10
7秒前
ly发布了新的文献求助10
7秒前
Polar_bear完成签到,获得积分10
8秒前
慕青应助勤奋的绪采纳,获得10
8秒前
hh发布了新的文献求助10
8秒前
酷爱小飞发布了新的文献求助10
9秒前
Akim应助杨建航采纳,获得10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707949
求助须知:如何正确求助?哪些是违规求助? 5186552
关于积分的说明 15252222
捐赠科研通 4861091
什么是DOI,文献DOI怎么找? 2609200
邀请新用户注册赠送积分活动 1559900
关于科研通互助平台的介绍 1517670