Multi-attentional Deepfake Detection

计算机科学 分类器(UML) 人工智能 二元分类 特征(语言学) 局部二进制模式 模式识别(心理学) 二进制数 机器学习 特征提取 图像(数学) 直方图 数学 支持向量机 哲学 语言学 算术
作者
Hanqing Zhao,Tianyi Wei,Wenbo Zhou,Weiming Zhang,Dongdong Chen,Nenghai Yu
标识
DOI:10.1109/cvpr46437.2021.00222
摘要

Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns. Recently, how to detect such forgery contents has become a hot research topic and many deepfake detection methods have been proposed. Most of them model deepfake detection as a vanilla binary classification problem, i.e, first use a backbone network to extract a global feature and then feed it into a binary classifier (real/fake). But since the difference between the real and fake images in this task is often subtle and local, we argue this vanilla solution is not optimal. In this paper, we instead formulate deepfake detection as a fine-grained classification problem and propose a new multi-attentional deepfake detection network. Specifically, it consists of three key components: 1) multiple spatial attention heads to make the network attend to different local parts; 2) textural feature enhancement block to zoom in the subtle artifacts in shallow features; 3) aggregate the low-level textural feature and high-level semantic features guided by the attention maps. Moreover, to address the learning difficulty of this network, we further introduce a new regional independence loss and an attention guided data augmentation strategy. Through extensive experiments on different datasets, we demonstrate the superiority of our method over the vanilla binary classifier counterparts, and achieve state-of-the-art performance. The models will be released recently at https://github.com/yoctta/multiple-attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风吹耳边关注了科研通微信公众号
刚刚
刚刚
刚刚
科研通AI6应助LY采纳,获得30
1秒前
刘润豪发布了新的文献求助50
1秒前
2秒前
2秒前
2秒前
msmk完成签到,获得积分10
3秒前
guozizi应助微解感染采纳,获得100
4秒前
小科发布了新的文献求助10
4秒前
奔跑的小达完成签到,获得积分10
4秒前
现代冰海给现代冰海的求助进行了留言
4秒前
5秒前
灵巧嚓茶完成签到,获得积分10
5秒前
小罗发布了新的文献求助10
5秒前
善学以致用应助coolru采纳,获得10
6秒前
英姑应助Cici采纳,获得10
6秒前
息衍007发布了新的文献求助10
7秒前
Jade发布了新的文献求助10
7秒前
烂漫的冰露完成签到,获得积分20
8秒前
华仔应助巴菲兔采纳,获得10
8秒前
9秒前
先知完成签到,获得积分10
9秒前
搜集达人应助Wildwolf采纳,获得10
9秒前
huhdjhd发布了新的文献求助10
9秒前
小杭76应助张zh采纳,获得10
9秒前
10秒前
poplar完成签到,获得积分10
10秒前
多情寻双完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
13秒前
科研通AI6应助大胆的含卉采纳,获得10
13秒前
14秒前
ektssw完成签到 ,获得积分10
15秒前
kai0305完成签到,获得积分10
16秒前
轩辕中蓝完成签到 ,获得积分0
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262524
求助须知:如何正确求助?哪些是违规求助? 4423472
关于积分的说明 13769822
捐赠科研通 4298194
什么是DOI,文献DOI怎么找? 2358305
邀请新用户注册赠送积分活动 1354627
关于科研通互助平台的介绍 1315823