产量(工程)
计算机科学
卫星
作物
机器学习
作物产量
人工智能
领域(数学)
农业工程
预测建模
生态学
数学
生物
工程类
航空航天工程
冶金
材料科学
纯数学
作者
Saul Newman,Robert T. Furbank
标识
DOI:10.1101/2021.03.08.434495
摘要
Abstract Four species of grass generate half of all human-consumed calories 1 . However, abundant biological data on species that produce our food remains largely inaccessible, imposing direct barriers to understanding crop yield and fitness traits. Here, we assemble and analyse a continent-wide database of field experiments spanning ten years and hundreds of thousands of machine-phenotyped populations of ten major crop species. Training an ensemble of machine learning models, using thousands of variables capturing weather, ground-sensor, soil, chemical and fertiliser dosage, management, and satellite data, produces robust cross-continent yield models exceeding R 2 = 0.8 prediction accuracy. In contrast to ‘black box’ analytics, detailed interrogation of these models reveals fundamental drivers of crop behaviour and complex interactions predicting yield and agronomic traits. These results demonstrate the capacity of machine learning models to build unified, interpretable, and explainable models of crop behaviour, and highlight the powerful role of data in the future of food.
科研通智能强力驱动
Strongly Powered by AbleSci AI