An LSTM-Attention-based Method to Muscle Fatigue Detection by Integrating Multi-Source sEMG Signals

计算机科学 肌肉疲劳 人工智能 语音识别 模式识别(心理学) 肌电图 计算机视觉 物理医学与康复 医学
作者
Xilai Chen,Meiqin Liu,Senlin Zhang
标识
DOI:10.23919/ccc52363.2021.9549359
摘要

Muscle fatigue detection can be of good help to many tasks such as athletes’ physical training and soldiers’ body status monitoring. Surface elecrtromyography (sEMG) signals are widely used in muscle fatigue detection. However, sEMG signals exist only when the muscle contracts and disappear when it relaxes, making muscle fatigue detection methods cannot work well in realistic applications. To solve this problem, a method based on phase space reconstruction is proposed to automatically filter useless signals and retain useful ones from raw sensor data, improving the practicality of the detection methods. In previous works on muscle fatigue detection, most researchers took only sEMG signals of the target muscle into consideration. However, in reality, when someone is doing physical work, several cooperative muscles rather than some single one participate in the task. Therefore, the exercise status of one muscle not only resides in its own sEMG signals, but also is included in its partners’. For this reason, a fatigue detection method to muscle fatigue detection based on integrating multi-source sEMG signals is proposed, where long short-term memories (LSTM) and one attention layer are used as an inference model. Moreover, a series of sequential detection results are integrated to make a final result to deal with accidental wrong judgements, which further improves the practicality. In our experiments, our LSTM-Attention-based method achieves an detection accuracy of 90.4%, which is much better than the method based on LSTM processing sEMG signals only from the target muscle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助ho采纳,获得30
刚刚
xinxiangshicheng完成签到 ,获得积分10
6秒前
活力的妙之完成签到 ,获得积分10
10秒前
zydaphne完成签到 ,获得积分10
10秒前
14秒前
十五完成签到,获得积分10
15秒前
ddn发布了新的文献求助10
18秒前
陆离完成签到 ,获得积分10
21秒前
寻桃阿玉完成签到 ,获得积分10
21秒前
笨笨摇伽完成签到,获得积分10
23秒前
xu完成签到 ,获得积分10
25秒前
深情安青应助ddn采纳,获得10
26秒前
28秒前
充电宝应助寻桃阿玉采纳,获得10
29秒前
31秒前
32秒前
晶晶宝贝的完成签到 ,获得积分10
35秒前
煮梅发布了新的文献求助30
35秒前
Kunning完成签到 ,获得积分10
36秒前
xfxzy应助科研通管家采纳,获得10
36秒前
Lucas应助科研通管家采纳,获得10
36秒前
修仙中应助科研通管家采纳,获得10
36秒前
修仙中应助科研通管家采纳,获得10
36秒前
那时花开应助科研通管家采纳,获得10
36秒前
酷波er应助科研通管家采纳,获得10
36秒前
修仙中应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
zh应助科研通管家采纳,获得10
36秒前
赘婿应助科研通管家采纳,获得10
36秒前
修仙中应助科研通管家采纳,获得10
36秒前
36秒前
a18336181581发布了新的文献求助10
36秒前
美好的落雁完成签到 ,获得积分10
40秒前
五本笔记完成签到 ,获得积分10
46秒前
ding应助噗噗采纳,获得10
53秒前
最善良的人完成签到,获得积分10
53秒前
煮梅完成签到,获得积分10
55秒前
55秒前
缥缈的醉山完成签到,获得积分10
56秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378385
求助须知:如何正确求助?哪些是违规求助? 4502816
关于积分的说明 14014575
捐赠科研通 4411403
什么是DOI,文献DOI怎么找? 2423255
邀请新用户注册赠送积分活动 1416172
关于科研通互助平台的介绍 1393591