An LSTM-Attention-based Method to Muscle Fatigue Detection by Integrating Multi-Source sEMG Signals

计算机科学 肌肉疲劳 人工智能 语音识别 模式识别(心理学) 肌电图 计算机视觉 物理医学与康复 医学
作者
Xilai Chen,Meiqin Liu,Senlin Zhang
标识
DOI:10.23919/ccc52363.2021.9549359
摘要

Muscle fatigue detection can be of good help to many tasks such as athletes’ physical training and soldiers’ body status monitoring. Surface elecrtromyography (sEMG) signals are widely used in muscle fatigue detection. However, sEMG signals exist only when the muscle contracts and disappear when it relaxes, making muscle fatigue detection methods cannot work well in realistic applications. To solve this problem, a method based on phase space reconstruction is proposed to automatically filter useless signals and retain useful ones from raw sensor data, improving the practicality of the detection methods. In previous works on muscle fatigue detection, most researchers took only sEMG signals of the target muscle into consideration. However, in reality, when someone is doing physical work, several cooperative muscles rather than some single one participate in the task. Therefore, the exercise status of one muscle not only resides in its own sEMG signals, but also is included in its partners’. For this reason, a fatigue detection method to muscle fatigue detection based on integrating multi-source sEMG signals is proposed, where long short-term memories (LSTM) and one attention layer are used as an inference model. Moreover, a series of sequential detection results are integrated to make a final result to deal with accidental wrong judgements, which further improves the practicality. In our experiments, our LSTM-Attention-based method achieves an detection accuracy of 90.4%, which is much better than the method based on LSTM processing sEMG signals only from the target muscle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哈哈镜阿姐完成签到,获得积分10
1秒前
脑洞疼应助悉达多采纳,获得10
2秒前
ss完成签到,获得积分10
3秒前
4秒前
5秒前
雪白傲薇发布了新的文献求助50
5秒前
mx关闭了mx文献求助
5秒前
月青悠完成签到,获得积分10
6秒前
科研白菜白完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
赘婿应助lt采纳,获得10
9秒前
9秒前
10秒前
漂亮之桃发布了新的文献求助10
10秒前
羔羊完成签到,获得积分10
10秒前
11秒前
禹无极发布了新的文献求助10
11秒前
12秒前
小叶子完成签到,获得积分20
12秒前
12秒前
12秒前
李木子hust完成签到,获得积分10
13秒前
烟花应助Zero_采纳,获得10
13秒前
天天快乐应助哈哈恬采纳,获得10
13秒前
13秒前
13秒前
白桃乌龙发布了新的文献求助10
14秒前
包子发布了新的文献求助10
14秒前
14秒前
出门右转完成签到,获得积分10
14秒前
Echo发布了新的文献求助10
14秒前
15秒前
王王发布了新的文献求助10
15秒前
可爱的函函应助白椋采纳,获得10
15秒前
飞云发布了新的文献求助10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958693
求助须知:如何正确求助?哪些是违规求助? 3504939
关于积分的说明 11121216
捐赠科研通 3236311
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871307
科研通“疑难数据库(出版商)”最低求助积分说明 802691