An LSTM-Attention-based Method to Muscle Fatigue Detection by Integrating Multi-Source sEMG Signals

计算机科学 肌肉疲劳 人工智能 语音识别 模式识别(心理学) 肌电图 计算机视觉 物理医学与康复 医学
作者
Xilai Chen,Meiqin Liu,Senlin Zhang
标识
DOI:10.23919/ccc52363.2021.9549359
摘要

Muscle fatigue detection can be of good help to many tasks such as athletes’ physical training and soldiers’ body status monitoring. Surface elecrtromyography (sEMG) signals are widely used in muscle fatigue detection. However, sEMG signals exist only when the muscle contracts and disappear when it relaxes, making muscle fatigue detection methods cannot work well in realistic applications. To solve this problem, a method based on phase space reconstruction is proposed to automatically filter useless signals and retain useful ones from raw sensor data, improving the practicality of the detection methods. In previous works on muscle fatigue detection, most researchers took only sEMG signals of the target muscle into consideration. However, in reality, when someone is doing physical work, several cooperative muscles rather than some single one participate in the task. Therefore, the exercise status of one muscle not only resides in its own sEMG signals, but also is included in its partners’. For this reason, a fatigue detection method to muscle fatigue detection based on integrating multi-source sEMG signals is proposed, where long short-term memories (LSTM) and one attention layer are used as an inference model. Moreover, a series of sequential detection results are integrated to make a final result to deal with accidental wrong judgements, which further improves the practicality. In our experiments, our LSTM-Attention-based method achieves an detection accuracy of 90.4%, which is much better than the method based on LSTM processing sEMG signals only from the target muscle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
刚刚
圆锥香蕉应助科研通管家采纳,获得20
刚刚
俭朴的寇应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
em0应助科研通管家采纳,获得10
刚刚
chuiza应助科研通管家采纳,获得10
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
htmy完成签到,获得积分10
1秒前
daodao发布了新的文献求助10
1秒前
2秒前
2秒前
何hyy完成签到 ,获得积分10
2秒前
2秒前
2秒前
CodeCraft应助胡可采纳,获得10
2秒前
2秒前
连仁兄发布了新的文献求助10
3秒前
3秒前
落后的可仁完成签到,获得积分10
3秒前
3秒前
思源应助黄雨欣采纳,获得10
4秒前
666发布了新的文献求助20
4秒前
寒冬完成签到,获得积分10
5秒前
小巧风华发布了新的文献求助10
6秒前
请输入昵称完成签到,获得积分10
6秒前
6秒前
隐形曼青应助lalaland采纳,获得10
7秒前
yutian928发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603085
求助须知:如何正确求助?哪些是违规求助? 4012051
关于积分的说明 12421341
捐赠科研通 3692397
什么是DOI,文献DOI怎么找? 2035573
邀请新用户注册赠送积分活动 1068806
科研通“疑难数据库(出版商)”最低求助积分说明 953277