An LSTM-Attention-based Method to Muscle Fatigue Detection by Integrating Multi-Source sEMG Signals

计算机科学 肌肉疲劳 人工智能 语音识别 模式识别(心理学) 肌电图 计算机视觉 物理医学与康复 医学
作者
Xilai Chen,Meiqin Liu,Senlin Zhang
标识
DOI:10.23919/ccc52363.2021.9549359
摘要

Muscle fatigue detection can be of good help to many tasks such as athletes’ physical training and soldiers’ body status monitoring. Surface elecrtromyography (sEMG) signals are widely used in muscle fatigue detection. However, sEMG signals exist only when the muscle contracts and disappear when it relaxes, making muscle fatigue detection methods cannot work well in realistic applications. To solve this problem, a method based on phase space reconstruction is proposed to automatically filter useless signals and retain useful ones from raw sensor data, improving the practicality of the detection methods. In previous works on muscle fatigue detection, most researchers took only sEMG signals of the target muscle into consideration. However, in reality, when someone is doing physical work, several cooperative muscles rather than some single one participate in the task. Therefore, the exercise status of one muscle not only resides in its own sEMG signals, but also is included in its partners’. For this reason, a fatigue detection method to muscle fatigue detection based on integrating multi-source sEMG signals is proposed, where long short-term memories (LSTM) and one attention layer are used as an inference model. Moreover, a series of sequential detection results are integrated to make a final result to deal with accidental wrong judgements, which further improves the practicality. In our experiments, our LSTM-Attention-based method achieves an detection accuracy of 90.4%, which is much better than the method based on LSTM processing sEMG signals only from the target muscle.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
humorlife完成签到,获得积分10
1秒前
selean完成签到,获得积分10
1秒前
2秒前
一玮完成签到 ,获得积分10
3秒前
垃圾桶完成签到 ,获得积分10
3秒前
福多多完成签到 ,获得积分10
4秒前
小蘑菇应助酷炫的__采纳,获得10
5秒前
hydrogen完成签到,获得积分10
5秒前
大模型应助神经蛙采纳,获得10
6秒前
凡夫俗子完成签到,获得积分10
6秒前
F_ken发布了新的文献求助10
7秒前
Jasper应助无私采白采纳,获得10
8秒前
拼搏冬瓜完成签到 ,获得积分10
9秒前
9秒前
和谐白云完成签到,获得积分10
13秒前
14秒前
14秒前
小小发布了新的文献求助30
15秒前
超级日光完成签到 ,获得积分20
16秒前
Rainsoul完成签到 ,获得积分10
17秒前
17秒前
18秒前
19秒前
lf完成签到,获得积分10
19秒前
zict2010发布了新的文献求助10
19秒前
上善若水呦完成签到 ,获得积分10
19秒前
一一发布了新的文献求助10
20秒前
滴滴答答完成签到,获得积分10
20秒前
wzz发布了新的文献求助10
22秒前
22秒前
Owen应助winnie采纳,获得10
22秒前
娇气的幼南完成签到 ,获得积分10
22秒前
神经蛙完成签到,获得积分20
23秒前
李健的小迷弟应助zict2010采纳,获得10
23秒前
大胆面包完成签到 ,获得积分10
24秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
如常完成签到,获得积分10
25秒前
25秒前
羊羊得意发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539792
求助须知:如何正确求助?哪些是违规求助? 4626553
关于积分的说明 14599759
捐赠科研通 4567423
什么是DOI,文献DOI怎么找? 2504037
邀请新用户注册赠送积分活动 1481750
关于科研通互助平台的介绍 1453372