DIFFnet: Diffusion parameter mapping network generalized for input diffusion gradient schemes and b-values.

扩散 磁共振弥散成像 各项异性扩散 数学 计算机科学 算法 扩散方程 应用数学 扩散图 有效扩散系数
作者
Juhyung Park,Woojin Jung,Eun Jung Choi,Se-Hong Oh,Jinhee Jang,Dongmyung Shin,Hongjun An,Jongho Lee
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2021.3116298
摘要

In MRI, deep neural networks have been proposed to reconstruct diffusion model parameters. However, the inputs of the networks were designed for a specific diffusion gradient scheme (i.e., diffusion gradient directions and numbers) and a specific b-value that are the same as the training data. In this study, a new deep neural network, referred to as DIFFnet, is developed to function as a generalized reconstruction tool of the diffusion-weighted signals for various gradient schemes and b-values. For generalization, diffusion signals are normalized in a q-space and then projected and quantized, producing a matrix (Qmatrix) as an input for the network. To demonstrate the validity of this approach, DIFFnet is evaluated for diffusion tensor imaging (DIFFnetDTI) and for neurite orientation dispersion and density imaging (DIFFnetNODDI). In each model, two datasets with different gradient schemes and b-values are tested. The results demonstrate accurate reconstruction of the diffusion parameters at substantially reduced processing time (approximately 8.7 times and 2240 times faster processing time than conventional methods in DTI and NODDI, respectively; less than 4% mean normalized root-mean-square errors (NRMSE) in DTI and less than 8% in NODDI). The generalization capability of the networks was further validated using reduced numbers of diffusion signals from the datasets and a public dataset from Human Connection Project. Different from previously proposed deep neural networks, DIFFnet does not require any specific gradient scheme and b-value for its input. As a result, it can be adopted as an online reconstruction tool for various complex diffusion imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助xicifish采纳,获得10
2秒前
2秒前
6秒前
塔恩沃特发布了新的文献求助10
6秒前
Charley发布了新的文献求助10
7秒前
9秒前
wangyr11发布了新的文献求助10
9秒前
千寻完成签到 ,获得积分10
9秒前
科研通AI5应助Suki采纳,获得10
10秒前
11秒前
吃猫的鱼发布了新的文献求助10
12秒前
TX完成签到,获得积分10
13秒前
开心不愁发布了新的文献求助10
14秒前
良辰应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
suibianba应助科研通管家采纳,获得10
15秒前
良辰应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
良辰应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
良辰应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
dll发布了新的文献求助10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
suibianba应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
良辰应助科研通管家采纳,获得10
17秒前
良辰应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
良辰应助科研通管家采纳,获得10
17秒前
魔幻的盼芙完成签到 ,获得积分10
20秒前
从容安珊完成签到,获得积分10
20秒前
英姑应助望北采纳,获得30
20秒前
yjihn发布了新的文献求助10
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674041
求助须知:如何正确求助?哪些是违规求助? 3229463
关于积分的说明 9785742
捐赠科研通 2939976
什么是DOI,文献DOI怎么找? 1611554
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736344