DIFFnet: Diffusion parameter mapping network generalized for input diffusion gradient schemes and b-values.

扩散 磁共振弥散成像 各项异性扩散 数学 计算机科学 算法 扩散方程 应用数学 扩散图 有效扩散系数
作者
Juhyung Park,Woojin Jung,Eun Jung Choi,Se-Hong Oh,Jinhee Jang,Dongmyung Shin,Hongjun An,Jongho Lee
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2021.3116298
摘要

In MRI, deep neural networks have been proposed to reconstruct diffusion model parameters. However, the inputs of the networks were designed for a specific diffusion gradient scheme (i.e., diffusion gradient directions and numbers) and a specific b-value that are the same as the training data. In this study, a new deep neural network, referred to as DIFFnet, is developed to function as a generalized reconstruction tool of the diffusion-weighted signals for various gradient schemes and b-values. For generalization, diffusion signals are normalized in a q-space and then projected and quantized, producing a matrix (Qmatrix) as an input for the network. To demonstrate the validity of this approach, DIFFnet is evaluated for diffusion tensor imaging (DIFFnetDTI) and for neurite orientation dispersion and density imaging (DIFFnetNODDI). In each model, two datasets with different gradient schemes and b-values are tested. The results demonstrate accurate reconstruction of the diffusion parameters at substantially reduced processing time (approximately 8.7 times and 2240 times faster processing time than conventional methods in DTI and NODDI, respectively; less than 4% mean normalized root-mean-square errors (NRMSE) in DTI and less than 8% in NODDI). The generalization capability of the networks was further validated using reduced numbers of diffusion signals from the datasets and a public dataset from Human Connection Project. Different from previously proposed deep neural networks, DIFFnet does not require any specific gradient scheme and b-value for its input. As a result, it can be adopted as an online reconstruction tool for various complex diffusion imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿雷发布了新的文献求助10
1秒前
希望天下0贩的0应助RowanLuo采纳,获得10
1秒前
caffeine发布了新的文献求助10
1秒前
想逃离完成签到,获得积分10
2秒前
SYLH应助等你 下课采纳,获得20
2秒前
义气梦山完成签到,获得积分20
2秒前
辛勤的苡发布了新的文献求助10
3秒前
3秒前
Aime完成签到 ,获得积分10
3秒前
丘比特应助顺心的定帮采纳,获得10
3秒前
Jackson发布了新的文献求助10
4秒前
fisher发布了新的文献求助30
4秒前
CAOHOU应助猫的毛采纳,获得10
6秒前
7秒前
ting完成签到,获得积分10
7秒前
小蘑菇应助辛勤的苡采纳,获得10
7秒前
7秒前
7秒前
Hello应助平淡山雁采纳,获得10
7秒前
Cc完成签到 ,获得积分10
8秒前
Star完成签到,获得积分10
8秒前
刘柳完成签到 ,获得积分10
8秒前
卡卡西应助wiwi采纳,获得30
8秒前
lebron发布了新的文献求助10
9秒前
10秒前
10秒前
激动的半芹完成签到 ,获得积分10
12秒前
超帅蓝血完成签到 ,获得积分10
12秒前
lok完成签到,获得积分10
13秒前
安详念蕾完成签到,获得积分10
13秒前
13秒前
整齐歌曲发布了新的文献求助10
13秒前
13秒前
heyihao应助章宇采纳,获得10
14秒前
15秒前
15秒前
BINGOFAN完成签到,获得积分10
15秒前
15秒前
大方觅珍发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099