StackIL6: a stacking ensemble model for improving the prediction of IL-6 inducing peptides.

机器学习 人工智能 堆积 蛋白质结构预测
作者
Phasit Charoenkwan,Wararat Chiangjong,Chanin Nantasenamat,Mehedi Hasan,Balachandran Manavalan,Watshara Shoombuatong
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:15
标识
DOI:10.1093/bib/bbab172
摘要

The release of interleukin (IL)-6 is stimulated by antigenic peptides from pathogens as well as by immune cells for activating aggressive inflammation. IL-6 inducing peptides are derived from pathogens and can be used as diagnostic biomarkers for predicting various stages of disease severity as well as being used as IL-6 inhibitors for the suppression of aggressive multi-signaling immune responses. Thus, the accurate identification of IL-6 inducing peptides is of great importance for investigating their mechanism of action as well as for developing diagnostic and immunotherapeutic applications. This study proposes a novel stacking ensemble model (termed StackIL6) for accurately identifying IL-6 inducing peptides. More specifically, StackIL6 was constructed from twelve different feature descriptors derived from three major groups of features (composition-based features, composition-transition-distribution-based features and physicochemical properties-based features) and five popular machine learning algorithms (extremely randomized trees, logistic regression, multi-layer perceptron, support vector machine and random forest). To enhance the utility of baseline models, they were effectively and systematically integrated through a stacking strategy to build the final meta-based model. Extensive benchmarking experiments demonstrated that StackIL6 could achieve significantly better performance than the existing method (IL6PRED) and outperformed its constituent baseline models on both training and independent test datasets, which thereby support its excellent discrimination and generalization abilities. To facilitate easy access to the StackIL6 model, it was established as a freely available web server accessible at http://camt.pythonanywhere.com/StackIL6. It is anticipated that StackIL6 can help to facilitate rapid screening of promising IL-6 inducing peptides for the development of diagnostic and immunotherapeutic applications in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
852应助LMFY采纳,获得30
4秒前
毛豆应助开心重要采纳,获得10
5秒前
毛豆应助开心重要采纳,获得10
5秒前
JamesPei应助Vicente采纳,获得10
7秒前
iwa发布了新的文献求助20
8秒前
dreamode应助Forever采纳,获得10
8秒前
8秒前
9秒前
222关闭了222文献求助
9秒前
9秒前
10秒前
JamesPei应助雪花落在丛林采纳,获得10
10秒前
hanzhiyuxing发布了新的文献求助10
10秒前
duanhuiyuan应助萝卜花1968采纳,获得10
10秒前
盛夏如花发布了新的文献求助10
11秒前
流星发布了新的文献求助10
11秒前
11秒前
Spawn发布了新的文献求助10
11秒前
微笑盼易完成签到 ,获得积分10
13秒前
13秒前
14秒前
16秒前
17秒前
LMFY发布了新的文献求助30
17秒前
ceeray23应助rcrc111采纳,获得10
17秒前
lipc发布了新的文献求助10
17秒前
可爱的函函应助hanzhiyuxing采纳,获得10
19秒前
1111发布了新的文献求助10
21秒前
庞桂妃发布了新的文献求助30
21秒前
22秒前
23秒前
nhjiebio发布了新的文献求助10
24秒前
烟花应助1111采纳,获得10
25秒前
dreamode应助Forever采纳,获得10
26秒前
活力的采枫完成签到 ,获得积分10
26秒前
SciGPT应助zq采纳,获得10
26秒前
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455233
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021628
捐赠科研通 2739152
什么是DOI,文献DOI怎么找? 1502472
科研通“疑难数据库(出版商)”最低求助积分说明 694544
邀请新用户注册赠送积分活动 693320