An Online Sintering Batching System Based on Machine Learning and Intelligent Algorithm

计算机科学 烧结 过程(计算) 生产线 生产(经济) 图层(电子) 算法 原材料 工艺工程 工程类 机械工程 复合材料 经济 有机化学 化学 材料科学 宏观经济学 操作系统
作者
Song Liu,Yadi Zhao,Xin Li,Бо Лю,Qing Lyu,Liangyuan Hao
出处
期刊:Isij International [The Iron and Steel Institute of Japan]
卷期号:61 (8): 2237-2248 被引量:6
标识
DOI:10.2355/isijinternational.isijint-2020-522
摘要

Aiming at the problem that the accuracy and economy of the traditional off-line batching method are not high, the online batching system (BSMLIA) based on machine learning and intelligent algorithms was put forward from three aspects: real-time, technical requirements and economic benefits. The accurate solution and on-line fast calculation of sintering raw material ratio under the influence of multiple factors are solved. Specifically, a BSMLIA architecture with three levels of data communication layer (DCL), parameter prediction and batching optimization layer (PPBOL), and diagnostic decision layer (DDL) was first designed to realize online monitoring and abnormal diagnosis of sinter performance. Then, the sintering batching adjustment and optimization module (SBAOM) was elaborated. The mixture performance prediction model was developed by MLR and LightGBM algorithm, the model can be based on sinter composition and quality index requirements and current sintering production process parameters to calculate the appropriate mixture performance. In addition, the pre-batching model and the sintering batching model were established to achieve the solution of the lowest raw material cost ratio for a given mixture performance. Finally, the actual production data was used to verify the SBAOM. The results proved that the online batching system can not only quickly calculate the batching plan that meets the requirements, but also reduce the batching cost by RMB 29.54/ton.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liufgui应助健康的怡采纳,获得20
1秒前
1秒前
斑鸠发布了新的文献求助10
1秒前
2秒前
阳子发布了新的文献求助10
2秒前
2秒前
chen发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
儞是哪个发布了新的文献求助10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
传奇3应助壮观的擎采纳,获得10
7秒前
8秒前
wwwccc发布了新的文献求助10
9秒前
阳子完成签到,获得积分10
9秒前
颜凡桃发布了新的文献求助30
10秒前
10秒前
zj完成签到,获得积分10
11秒前
农大长工发布了新的文献求助10
12秒前
小余同学发布了新的文献求助10
12秒前
q792309106发布了新的文献求助10
14秒前
16秒前
17秒前
17秒前
LaTeXer应助gej采纳,获得50
18秒前
田様应助yaoqiangshi采纳,获得10
18秒前
18秒前
任燕杰完成签到,获得积分10
19秒前
23秒前
RC_Wang应助q792309106采纳,获得10
24秒前
25秒前
26秒前
研友_VZG7GZ应助农大长工采纳,获得10
28秒前
木木发布了新的文献求助10
29秒前
30秒前
30秒前
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160