A Model-Averaging Approach for High-Dimensional Regression

Lasso(编程语言) 数学 特征选择 回归 回归分析 选型 弹性网正则化 参数统计 统计 计算机科学 算法 人工智能 万维网
作者
Tomohiro Ando,Ker-Chau Li
标识
DOI:10.1080/01621459.2013.838168
摘要

AbstractThis article considers high-dimensional regression problems in which the number of predictors p exceeds the sample size n. We develop a model-averaging procedure for high-dimensional regression problems. Unlike most variable selection studies featuring the identification of true predictors, our focus here is on the prediction accuracy for the true conditional mean of y given the p predictors. Our method consists of two steps. The first step is to construct a class of regression models, each with a smaller number of regressors, to avoid the degeneracy of the information matrix. The second step is to find suitable model weights for averaging. To minimize the prediction error, we estimate the model weights using a delete-one cross-validation procedure. Departing from the literature of model averaging that requires the weights always sum to one, an important improvement we introduce is to remove this constraint. We derive some theoretical results to justify our procedure. A theorem is proved, showing that delete-one cross-validation achieves the lowest possible prediction loss asymptotically. This optimality result requires a condition that unravels an important feature of high-dimensional regression. The prediction error of any individual model in the class for averaging is required to be higher than the classic root n rate under the traditional parametric regression. This condition reflects the difficulty of high-dimensional regression and it depicts a situation especially meaningful for p > n. We also conduct a simulation study to illustrate the merits of the proposed approach over several existing methods, including lasso, group lasso, forward regression, Phase Coupled (PC)-simple algorithm, Akaike information criterion (AIC) model-averaging, Bayesian information criterion (BIC) model-averaging methods, and SCAD (smoothly clipped absolute deviation). This approach uses quadratic programming to overcome the computing time issue commonly encountered in the cross-validation literature. Supplementary materials for this article are available online.KEY WORDS: Asymptotic optimalityHigh-dimensional regression modelsModel weights SUPPLEMENTARY MATERIALSThe supplementary materials include: (1) additional simulation results in Section 4.1, and (2) Table 2 (a list of 84 predictors used in Birth weight data) in Section 4.2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sdniuidifod发布了新的文献求助10
1秒前
Sevi发布了新的文献求助10
1秒前
2秒前
科目三应助高兴瑾瑜采纳,获得10
2秒前
2秒前
kevin1018发布了新的文献求助10
3秒前
3秒前
4秒前
十七应助小白采纳,获得10
5秒前
Orange应助小白采纳,获得10
5秒前
科目三应助小白采纳,获得10
5秒前
可爱的函函应助小白采纳,获得10
5秒前
SciGPT应助小白采纳,获得10
5秒前
上官若男应助小白采纳,获得10
6秒前
cocolu应助小白采纳,获得10
6秒前
Owen应助小白采纳,获得10
6秒前
prosperp应助阿莫西林皮蛋采纳,获得50
6秒前
xue完成签到,获得积分10
6秒前
6秒前
ding应助LL采纳,获得10
6秒前
彭于晏应助火翟丰丰山心采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
汪汪大王完成签到 ,获得积分10
8秒前
木歌发布了新的文献求助10
9秒前
kevin1018完成签到,获得积分10
9秒前
asdfj完成签到,获得积分10
9秒前
10秒前
白方明发布了新的文献求助10
10秒前
shanxiangs完成签到,获得积分10
10秒前
10秒前
CHAIZH发布了新的文献求助10
11秒前
小潘不潘发布了新的文献求助10
11秒前
12秒前
小蘑菇应助清爽的音响采纳,获得10
13秒前
14秒前
zyt发布了新的文献求助10
14秒前
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490333
求助须知:如何正确求助?哪些是违规求助? 3077289
关于积分的说明 9148413
捐赠科研通 2769525
什么是DOI,文献DOI怎么找? 1519761
邀请新用户注册赠送积分活动 704287
科研通“疑难数据库(出版商)”最低求助积分说明 702113