Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware

计算机科学 迭代重建 图形硬件 断层重建 绘图 图形处理单元 可视化 计算机图形学 计算机图形学(图像) 计算机视觉 计算科学
作者
Fang Xu,Klaus Mueller
出处
期刊:IEEE Transactions on Nuclear Science [Institute of Electrical and Electronics Engineers]
卷期号:52 (3): 654-663 被引量:246
标识
DOI:10.1109/tns.2005.851398
摘要

The task of reconstructing an object from its projections via tomographic methods is a time-consuming process due to the vast complexity of the data. For this reason, manufacturers of equipment for medical computed tomography (CT) rely mostly on special application specified integrated circuits (ASICs) to obtain the fast reconstruction times required in clinical settings. Although modern CPUs have gained sufficient power in recent years to be competitive for two-dimensional (2D) reconstruction, this is not the case for three-dimensional (3D) reconstructions, especially not when iterative algorithms must be applied. The recent evolution of commodity PC computer graphics boards (GPUs) has the potential to change this picture in a very dramatic way. In this paper we will show how the new floating point GPUs can be exploited to perform both analytical and iterative reconstruction from X-ray and functional imaging data. For this purpose, we decompose three popular three-dimensional (3D) reconstruction algorithms (Feldkamp filtered backprojection, the simultaneous algebraic reconstruction technique, and expectation maximization) into a common set of base modules, which all can be executed on the GPU and their output linked internally. Visualization of the reconstructed object is easily achieved since the object already resides in the graphics hardware, allowing one to run a visualization module at any time to view the reconstruction results. Our implementation allows speedups of over an order of magnitude with respect to CPU implementations, at comparable image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的月完成签到,获得积分10
1秒前
安静的难破完成签到,获得积分10
1秒前
2秒前
2秒前
javascript发布了新的文献求助10
2秒前
金光大元宝完成签到,获得积分10
3秒前
烟花应助niuya采纳,获得10
4秒前
小马甲应助自然含羞草采纳,获得10
4秒前
SciGPT应助11采纳,获得10
5秒前
与我常在完成签到,获得积分20
5秒前
糊涂的万完成签到,获得积分10
5秒前
6秒前
7秒前
丘比特应助鸢尾采纳,获得10
7秒前
晨曦完成签到,获得积分10
7秒前
cara完成签到,获得积分10
8秒前
yh发布了新的文献求助10
8秒前
Di喵喵完成签到,获得积分10
9秒前
monoklatt发布了新的文献求助10
9秒前
9秒前
深情安青应助Yue采纳,获得10
10秒前
10秒前
无辜凤凰发布了新的文献求助10
11秒前
YaoHui发布了新的文献求助10
11秒前
华仔应助大大怪采纳,获得10
11秒前
Jiali完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
13秒前
科研通AI6应助魔幻安筠采纳,获得10
14秒前
畅快代柔发布了新的文献求助30
15秒前
混沌武士完成签到 ,获得积分10
15秒前
充电宝应助孔蓓蓓采纳,获得10
15秒前
耿耿发布了新的文献求助10
16秒前
16秒前
彩色平灵发布了新的文献求助10
17秒前
归尘发布了新的文献求助10
17秒前
Ming发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259760
求助须知:如何正确求助?哪些是违规求助? 4421264
关于积分的说明 13762582
捐赠科研通 4295161
什么是DOI,文献DOI怎么找? 2356757
邀请新用户注册赠送积分活动 1353139
关于科研通互助平台的介绍 1314315