Variational Algorithms for Approximate Bayesian Inference

图形模型 过度拟合 算法 边际似然 变量消去 计算机科学 近似推理 贝叶斯网络 人工智能 贝叶斯推理 潜变量 推论 贝叶斯概率 机器学习 数学 人工神经网络
作者
Matthew J. Beal
链接
摘要

The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coherent way, avoids overfitting problems, and provides a principled basis for selecting between alternative models. Unfortunately the computations required are usually intractable. This thesis presents a unified variational Bayesian (VB) framework which approximates these computations in models with latent variables using a lower bound on the marginal likelihood. Chapter 1 presents background material on Bayesian inference, graphical models, and propagation algorithms. Chapter 2 forms the theoretical core of the thesis, generalising the expectation- maximisation (EM) algorithm for learning maximum likelihood parameters to the VB EM algorithm which integrates over model parameters. The algorithm is then specialised to the large family of conjugate-exponential (CE) graphical models, and several theorems are presented to pave the road for automated VB derivation procedures in both directed and undirected graphs (Bayesian and Markov networks, respectively). Chapters 3–5 derive and apply the VB EM algorithm to three commonly-used and important models: mixtures of factor analysers, linear dynamical systems, and hidden Markov models. It is shown how model selection tasks such as determining the dimensionality, cardinality, or number of variables are possible using VB approximations. Also explored are methods for combining sampling procedures with variational approximations, to estimate the tightness of VB bounds and to obtain more effective sampling algorithms. Chapter 6 applies VB learning to a long-standing problem of scoring discrete-variable directed acyclic graphs, and compares the performance to annealed importance sampling amongst other methods. Throughout, the VB approximation is compared to other methods including sampling, Cheeseman-Stutz, and asymptotic approximations such as BIC. The thesis concludes with a discussion of evolving directions for model selection including infinite models and alternative approximations to the marginal likelihood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等等发布了新的文献求助10
1秒前
sheh发布了新的文献求助30
3秒前
无语的长颈鹿完成签到,获得积分10
3秒前
3秒前
fisher完成签到,获得积分10
3秒前
ll2925203发布了新的文献求助10
4秒前
柠檬01210发布了新的文献求助10
4秒前
科研通AI5应助llj采纳,获得10
4秒前
大大小小完成签到,获得积分20
4秒前
嘚嘚完成签到,获得积分10
5秒前
loop发布了新的文献求助10
5秒前
5秒前
Roach完成签到,获得积分10
7秒前
汉堡包应助1l2kl采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
sheh完成签到,获得积分20
11秒前
小龅牙吖发布了新的文献求助10
12秒前
12秒前
Passionfruit发布了新的文献求助10
13秒前
Long_Bai发布了新的文献求助10
13秒前
西奥发布了新的文献求助10
13秒前
许起眸发布了新的文献求助10
13秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
核桃应助科研通管家采纳,获得30
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400