Transformation textures in steels

奥氏体 材料科学 铁氧体(磁铁) 马氏体 纹理(宇宙学) 转化(遗传学) 韧性 冶金 无扩散变换 复合材料 微观结构 人工智能 计算机科学 化学 图像(数学) 基因 生物化学
作者
Ranjit Ray,John J. Jonas
出处
期刊:International Materials Reviews [Informa]
卷期号:35 (1): 1-36 被引量:371
标识
DOI:10.1179/095066090790324046
摘要

AbstractAbstractDuring the controlled rolling of steel, the parent γ phase develops a crystallographic texture which is later acquired by the material after transformation. The major components of the deformation texture of austenite are the {110} (112) and {112} (111) which give rise, respectively, to the {332} (113) and (113) (110) orientations in the transformation products. The recrystallisation texture of austenite, {1OO} (001), is similarly transformed into the {100} (011) component in the ferrite. The latter orientation can also be strengthened by ferrite rolling. During processing, the recrystallisation of γ should be avoided in order to prevent the formation of {100} (011) component, which has a deleterious effect on the delamination behaviour of steels. The {332} (113) is the most beneficial among the transformation texture components from the point of view of achieving good deep drawability and improved strength and toughness. The effects of compositional and processing variables, during controlled rolling, on the overall sharpness as well as on the relative intensities of the components of the transformation texture are described. While the {332}(113) component is significantly affected by some of these parameters, the {113} (110) remains relatively insensitive to these factors. Variant selection does not seem to occur during ferrite transformation. By contrast, martensite textures are generally much sharper than ferrite textures, and this is attributable to variant selection during transformation. Several analytical tools are available for the prediction of transformation textures. With the aid of information obtained in this way, suitable processing routes can be devised to produce desirable texture components in the γ, which are then inherited by the α. There is much scope for research along these lines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JY发布了新的文献求助10
1秒前
羽寞发布了新的文献求助10
1秒前
心灵美天奇完成签到 ,获得积分10
1秒前
1秒前
华仔发布了新的文献求助10
2秒前
SciGPT应助江苏大猩猩采纳,获得10
2秒前
lkl发布了新的文献求助10
2秒前
浮浮世世发布了新的文献求助10
2秒前
小章完成签到 ,获得积分10
2秒前
ding应助湖里鱼采纳,获得10
3秒前
3秒前
3秒前
卡布奇诺发布了新的文献求助20
3秒前
1234发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
忧郁道之完成签到 ,获得积分10
4秒前
lemperory发布了新的文献求助10
4秒前
5秒前
QC发布了新的文献求助10
5秒前
单薄滑板完成签到,获得积分20
6秒前
6秒前
义气的菲鹰完成签到,获得积分10
6秒前
7秒前
Gengli发布了新的文献求助10
7秒前
小二郎应助Aurora采纳,获得10
7秒前
7秒前
YC完成签到,获得积分10
7秒前
思源应助XIAONIE25采纳,获得10
7秒前
玉洁完成签到,获得积分10
8秒前
8秒前
8秒前
单薄滑板发布了新的文献求助10
9秒前
科研通AI6应助大胆的蜜粉采纳,获得10
9秒前
领导范儿应助大胆的蜜粉采纳,获得10
9秒前
二雷子完成签到,获得积分10
9秒前
小明完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
深情安青应助羽寞采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271