Transformation textures in steels

奥氏体 材料科学 铁氧体(磁铁) 马氏体 纹理(宇宙学) 转化(遗传学) 韧性 冶金 无扩散变换 复合材料 微观结构 人工智能 计算机科学 化学 图像(数学) 基因 生物化学
作者
Ranjit Ray,John J. Jonas
出处
期刊:International Materials Reviews [Informa]
卷期号:35 (1): 1-36 被引量:371
标识
DOI:10.1179/095066090790324046
摘要

AbstractAbstractDuring the controlled rolling of steel, the parent γ phase develops a crystallographic texture which is later acquired by the material after transformation. The major components of the deformation texture of austenite are the {110} (112) and {112} (111) which give rise, respectively, to the {332} (113) and (113) (110) orientations in the transformation products. The recrystallisation texture of austenite, {1OO} (001), is similarly transformed into the {100} (011) component in the ferrite. The latter orientation can also be strengthened by ferrite rolling. During processing, the recrystallisation of γ should be avoided in order to prevent the formation of {100} (011) component, which has a deleterious effect on the delamination behaviour of steels. The {332} (113) is the most beneficial among the transformation texture components from the point of view of achieving good deep drawability and improved strength and toughness. The effects of compositional and processing variables, during controlled rolling, on the overall sharpness as well as on the relative intensities of the components of the transformation texture are described. While the {332}(113) component is significantly affected by some of these parameters, the {113} (110) remains relatively insensitive to these factors. Variant selection does not seem to occur during ferrite transformation. By contrast, martensite textures are generally much sharper than ferrite textures, and this is attributable to variant selection during transformation. Several analytical tools are available for the prediction of transformation textures. With the aid of information obtained in this way, suitable processing routes can be devised to produce desirable texture components in the γ, which are then inherited by the α. There is much scope for research along these lines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清欢渡Hertz完成签到 ,获得积分10
刚刚
万能图书馆应助PDD采纳,获得10
刚刚
老实的黑米完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
Akim应助小阿发采纳,获得10
3秒前
姜糖完成签到,获得积分10
4秒前
wanci应助心灵美从寒采纳,获得10
5秒前
5秒前
科研通AI6应助mxr采纳,获得200
5秒前
Vintoe完成签到 ,获得积分10
5秒前
5秒前
自然剑发布了新的文献求助10
6秒前
岳元满关注了科研通微信公众号
6秒前
wing发布了新的文献求助30
6秒前
科研通AI6应助TG采纳,获得10
7秒前
7秒前
露桥闻笛发布了新的文献求助10
8秒前
科小白完成签到 ,获得积分0
8秒前
爱学习的小张完成签到,获得积分10
8秒前
科研通AI6应助JL采纳,获得10
8秒前
kiki完成签到,获得积分10
8秒前
bk发布了新的文献求助10
8秒前
姜糖发布了新的文献求助30
8秒前
xiaotian发布了新的文献求助10
9秒前
11秒前
科目三应助小邸采纳,获得30
12秒前
王梦雨发布了新的文献求助10
13秒前
慕青应助你怎么睡得着觉采纳,获得10
13秒前
kiki发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
Owen应助Pang_Rongye采纳,获得10
15秒前
Hi发布了新的文献求助20
15秒前
16秒前
18秒前
green发布了新的文献求助10
18秒前
贝利亚发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642264
求助须知:如何正确求助?哪些是违规求助? 4758561
关于积分的说明 15017114
捐赠科研通 4800890
什么是DOI,文献DOI怎么找? 2566214
邀请新用户注册赠送积分活动 1524333
关于科研通互助平台的介绍 1483913