Transformation textures in steels

奥氏体 材料科学 铁氧体(磁铁) 马氏体 纹理(宇宙学) 转化(遗传学) 韧性 冶金 无扩散变换 复合材料 微观结构 人工智能 计算机科学 化学 图像(数学) 基因 生物化学
作者
Ranjit Ray,John J. Jonas
出处
期刊:International Materials Reviews [Informa]
卷期号:35 (1): 1-36 被引量:371
标识
DOI:10.1179/095066090790324046
摘要

AbstractAbstractDuring the controlled rolling of steel, the parent γ phase develops a crystallographic texture which is later acquired by the material after transformation. The major components of the deformation texture of austenite are the {110} (112) and {112} (111) which give rise, respectively, to the {332} (113) and (113) (110) orientations in the transformation products. The recrystallisation texture of austenite, {1OO} (001), is similarly transformed into the {100} (011) component in the ferrite. The latter orientation can also be strengthened by ferrite rolling. During processing, the recrystallisation of γ should be avoided in order to prevent the formation of {100} (011) component, which has a deleterious effect on the delamination behaviour of steels. The {332} (113) is the most beneficial among the transformation texture components from the point of view of achieving good deep drawability and improved strength and toughness. The effects of compositional and processing variables, during controlled rolling, on the overall sharpness as well as on the relative intensities of the components of the transformation texture are described. While the {332}(113) component is significantly affected by some of these parameters, the {113} (110) remains relatively insensitive to these factors. Variant selection does not seem to occur during ferrite transformation. By contrast, martensite textures are generally much sharper than ferrite textures, and this is attributable to variant selection during transformation. Several analytical tools are available for the prediction of transformation textures. With the aid of information obtained in this way, suitable processing routes can be devised to produce desirable texture components in the γ, which are then inherited by the α. There is much scope for research along these lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助风荏采纳,获得10
刚刚
刚刚
wpk9904发布了新的文献求助10
刚刚
joplinJIA发布了新的文献求助10
1秒前
1秒前
酷波er应助土豪的傲菡采纳,获得10
1秒前
2秒前
2秒前
4秒前
5秒前
Danboard发布了新的文献求助10
5秒前
上官若男应助魏开铭采纳,获得10
6秒前
我是老大应助咚咚锵采纳,获得10
6秒前
聂珩发布了新的文献求助10
6秒前
xihuanni完成签到,获得积分10
7秒前
杨森omg发布了新的文献求助10
8秒前
wpk9904完成签到,获得积分10
8秒前
8秒前
结实的寄柔完成签到,获得积分10
8秒前
hussarzcz完成签到,获得积分10
9秒前
阿楷发布了新的文献求助10
9秒前
10秒前
joplinJIA完成签到,获得积分20
11秒前
lerrygg发布了新的文献求助210
11秒前
11秒前
完美世界应助粗犷的问夏采纳,获得10
12秒前
12秒前
瑕灬发布了新的文献求助10
13秒前
汉堡包应助吕如音采纳,获得10
14秒前
14秒前
伊雪儿完成签到,获得积分10
15秒前
Hello应助lplp采纳,获得10
16秒前
17秒前
湛刘佳完成签到 ,获得积分10
18秒前
搜集达人应助粗暴的从蓉采纳,获得30
18秒前
颜千琴发布了新的文献求助10
18秒前
科研通AI2S应助King采纳,获得10
19秒前
LmaoAI应助xing采纳,获得10
19秒前
li完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135928
求助须知:如何正确求助?哪些是违规求助? 2786670
关于积分的说明 7779194
捐赠科研通 2442969
什么是DOI,文献DOI怎么找? 1298748
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870