Transformation textures in steels

奥氏体 材料科学 铁氧体(磁铁) 马氏体 纹理(宇宙学) 转化(遗传学) 韧性 冶金 无扩散变换 复合材料 微观结构 人工智能 计算机科学 化学 图像(数学) 基因 生物化学
作者
Ranjit Ray,John J. Jonas
出处
期刊:International Materials Reviews [Informa]
卷期号:35 (1): 1-36 被引量:371
标识
DOI:10.1179/095066090790324046
摘要

AbstractAbstractDuring the controlled rolling of steel, the parent γ phase develops a crystallographic texture which is later acquired by the material after transformation. The major components of the deformation texture of austenite are the {110} (112) and {112} (111) which give rise, respectively, to the {332} (113) and (113) (110) orientations in the transformation products. The recrystallisation texture of austenite, {1OO} (001), is similarly transformed into the {100} (011) component in the ferrite. The latter orientation can also be strengthened by ferrite rolling. During processing, the recrystallisation of γ should be avoided in order to prevent the formation of {100} (011) component, which has a deleterious effect on the delamination behaviour of steels. The {332} (113) is the most beneficial among the transformation texture components from the point of view of achieving good deep drawability and improved strength and toughness. The effects of compositional and processing variables, during controlled rolling, on the overall sharpness as well as on the relative intensities of the components of the transformation texture are described. While the {332}(113) component is significantly affected by some of these parameters, the {113} (110) remains relatively insensitive to these factors. Variant selection does not seem to occur during ferrite transformation. By contrast, martensite textures are generally much sharper than ferrite textures, and this is attributable to variant selection during transformation. Several analytical tools are available for the prediction of transformation textures. With the aid of information obtained in this way, suitable processing routes can be devised to produce desirable texture components in the γ, which are then inherited by the α. There is much scope for research along these lines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
KSung完成签到 ,获得积分10
1秒前
大模型应助余周2024采纳,获得10
1秒前
Twonej应助Andy采纳,获得30
2秒前
可莉完成签到 ,获得积分10
3秒前
3秒前
wsdshuai比发布了新的文献求助10
4秒前
魏猛完成签到,获得积分10
4秒前
5秒前
桐桐应助wei采纳,获得10
5秒前
仁爱嫣发布了新的文献求助20
5秒前
力劈华山完成签到,获得积分10
6秒前
JamesPei应助平淡大船采纳,获得10
7秒前
7秒前
7秒前
li给li的求助进行了留言
8秒前
靓丽衫完成签到 ,获得积分10
8秒前
hhh完成签到,获得积分20
9秒前
科研小白完成签到 ,获得积分10
9秒前
ai幸完成签到,获得积分10
9秒前
科研通AI6.1应助积极纲采纳,获得10
9秒前
CodeCraft应助E10100采纳,获得10
9秒前
爆米花应助Long采纳,获得10
10秒前
132完成签到,获得积分10
10秒前
11秒前
shanshanerchuan完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
Danmo完成签到,获得积分10
13秒前
快乐滑板应助miemie66采纳,获得10
13秒前
斯文败类应助Aurinse采纳,获得10
13秒前
今后应助nini采纳,获得10
14秒前
14秒前
uu完成签到,获得积分20
14秒前
gugugu发布了新的文献求助10
15秒前
15秒前
15秒前
均衡完成签到,获得积分10
15秒前
小刘同学发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761101
求助须知:如何正确求助?哪些是违规求助? 5527734
关于积分的说明 15398943
捐赠科研通 4897671
什么是DOI,文献DOI怎么找? 2634354
邀请新用户注册赠送积分活动 1582460
关于科研通互助平台的介绍 1537768