Transformation textures in steels

奥氏体 材料科学 铁氧体(磁铁) 马氏体 纹理(宇宙学) 转化(遗传学) 韧性 冶金 无扩散变换 复合材料 微观结构 人工智能 计算机科学 化学 图像(数学) 基因 生物化学
作者
Ranjit Ray,John J. Jonas
出处
期刊:International Materials Reviews [Taylor & Francis]
卷期号:35 (1): 1-36 被引量:371
标识
DOI:10.1179/095066090790324046
摘要

AbstractAbstractDuring the controlled rolling of steel, the parent γ phase develops a crystallographic texture which is later acquired by the material after transformation. The major components of the deformation texture of austenite are the {110} (112) and {112} (111) which give rise, respectively, to the {332} (113) and (113) (110) orientations in the transformation products. The recrystallisation texture of austenite, {1OO} (001), is similarly transformed into the {100} (011) component in the ferrite. The latter orientation can also be strengthened by ferrite rolling. During processing, the recrystallisation of γ should be avoided in order to prevent the formation of {100} (011) component, which has a deleterious effect on the delamination behaviour of steels. The {332} (113) is the most beneficial among the transformation texture components from the point of view of achieving good deep drawability and improved strength and toughness. The effects of compositional and processing variables, during controlled rolling, on the overall sharpness as well as on the relative intensities of the components of the transformation texture are described. While the {332}(113) component is significantly affected by some of these parameters, the {113} (110) remains relatively insensitive to these factors. Variant selection does not seem to occur during ferrite transformation. By contrast, martensite textures are generally much sharper than ferrite textures, and this is attributable to variant selection during transformation. Several analytical tools are available for the prediction of transformation textures. With the aid of information obtained in this way, suitable processing routes can be devised to produce desirable texture components in the γ, which are then inherited by the α. There is much scope for research along these lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
doctorshg发布了新的文献求助10
2秒前
丘比特应助KSLC采纳,获得10
3秒前
focco完成签到,获得积分10
3秒前
搞怪的雪巧完成签到,获得积分20
3秒前
小满完成签到 ,获得积分10
3秒前
4秒前
清清清完成签到 ,获得积分10
4秒前
hwei发布了新的文献求助10
4秒前
梓里楠木发布了新的文献求助10
4秒前
ww发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
心静听炊烟完成签到 ,获得积分10
7秒前
7秒前
8秒前
mate完成签到,获得积分10
8秒前
金志铭关注了科研通微信公众号
8秒前
中原第一深情完成签到,获得积分10
10秒前
我是老大应助MM采纳,获得10
10秒前
SciGPT应助雨碎寒江采纳,获得10
10秒前
orangel发布了新的文献求助10
10秒前
10秒前
zzz发布了新的文献求助10
11秒前
doctorshg完成签到,获得积分10
12秒前
任性青烟发布了新的文献求助10
12秒前
13秒前
ycy发布了新的文献求助10
14秒前
至幸发布了新的文献求助10
14秒前
15秒前
时光完成签到 ,获得积分10
15秒前
豆儿嘚小豆儿应助orangel采纳,获得10
16秒前
科研工作者完成签到,获得积分10
16秒前
17秒前
17秒前
GOJO完成签到,获得积分10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226371
求助须知:如何正确求助?哪些是违规求助? 4397864
关于积分的说明 13687648
捐赠科研通 4262400
什么是DOI,文献DOI怎么找? 2339124
邀请新用户注册赠送积分活动 1336484
关于科研通互助平台的介绍 1292517