Best-worst multi-criteria decision-making method

多准则决策分析 成对比较 层次分析法 一致性(知识库) 计算机科学 托普西斯 可靠性(半导体) 选择(遗传算法) 决策问题 数学优化 极小极大 数据挖掘 数学 运筹学 机器学习 人工智能 算法 功率(物理) 量子力学 物理
作者
Jafar Rezaei
出处
期刊:Omega [Elsevier]
卷期号:53: 49-57 被引量:3013
标识
DOI:10.1016/j.omega.2014.11.009
摘要

In this paper, a new method, called best-worst method (BWM) is proposed to solve multi-criteria decision-making (MCDM) problems. In an MCDM problem, a number of alternatives are evaluated with respect to a number of criteria in order to select the best alternative(s). According to BWM, the best (e.g. most desirable, most important) and the worst (e.g. least desirable, least important) criteria are identified first by the decision-maker. Pairwise comparisons are then conducted between each of these two criteria (best and worst) and the other criteria. A maximin problem is then formulated and solved to determine the weights of different criteria. The weights of the alternatives with respect to different criteria are obtained using the same process. The final scores of the alternatives are derived by aggregating the weights from different sets of criteria and alternatives, based on which the best alternative is selected. A consistency ratio is proposed for the BWM to check the reliability of the comparisons. To illustrate the proposed method and evaluate its performance, we used some numerical examples and a real-word decision-making problem (mobile phone selection). For the purpose of comparison, we chose AHP (analytic hierarchy process), which is also a pairwise comparison-based method. Statistical results show that BWM performs significantly better than AHP with respect to the consistency ratio, and the other evaluation criteria: minimum violation, total deviation, and conformity. The salient features of the proposed method, compared to the existing MCDM methods, are: (1) it requires less comparison data; (2) it leads to more consistent comparisons, which means that it produces more reliable results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
丘比特应助海森堡采纳,获得10
1秒前
自由溪灵发布了新的文献求助10
1秒前
2秒前
石籽发布了新的文献求助10
3秒前
思源应助邵初蓝采纳,获得10
4秒前
4秒前
zhengchangdian关注了科研通微信公众号
4秒前
5秒前
益生益生发布了新的文献求助10
6秒前
6秒前
7秒前
无辜的大雁应助东东采纳,获得10
7秒前
8秒前
852应助飘逸平松采纳,获得30
8秒前
kk发布了新的文献求助10
9秒前
雪白元风完成签到 ,获得积分10
10秒前
细心的岩完成签到,获得积分10
12秒前
我是老大应助风中听枫采纳,获得10
14秒前
斯文败类应助Aixzhou采纳,获得10
14秒前
大个应助feiying88采纳,获得10
17秒前
17秒前
17秒前
kingwill应助Chen采纳,获得20
17秒前
17秒前
Yang完成签到,获得积分10
19秒前
兴奋小林完成签到,获得积分10
19秒前
20秒前
李健应助CY采纳,获得10
21秒前
21秒前
飘逸平松发布了新的文献求助30
21秒前
自由溪灵发布了新的文献求助10
21秒前
碧蓝丹烟发布了新的文献求助10
23秒前
23秒前
24秒前
负责的寒梅完成签到,获得积分10
25秒前
天天快乐应助江流儿采纳,获得10
26秒前
善良半梦完成签到,获得积分10
26秒前
阜睿发布了新的文献求助10
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489857
求助须知:如何正确求助?哪些是违规求助? 3076978
关于积分的说明 9147123
捐赠科研通 2769152
什么是DOI,文献DOI怎么找? 1519630
邀请新用户注册赠送积分活动 704069
科研通“疑难数据库(出版商)”最低求助积分说明 702084