物理
主方程
统计物理学
随机过程
哈密顿量(控制论)
马尔可夫过程
量子随机演算
量子
相干态
连续时间随机过程
随机建模
时间演化
非对称简单排除过程
随机动力学
经典力学
量子力学
量子过程
随机微分方程
量子动力学
数学优化
数学
统计
作者
Kristan Temme,Michael M. Wolf,Frank Verstraete
标识
DOI:10.1088/1367-2630/14/7/075004
摘要
Stochastic exclusion processes play an integral role in the physics of non-equilibrium statistical mechanics.These models are Markovian processes, described by a classical master equation.In this paper a quantum mechanical version of a stochastic hopping process in one dimension is formulated in terms of a quantum master equation.This allows the investigation of coherent and stochastic evolution in the same formal framework.The focus lies on the non-equilibrium steady state.Two stochastic model systems are considered, the totally asymmetric exclusion process and the fully symmetric exclusion process.The steady state transport properties of these models is compared to the case with additional coherent evolution, generated by the XX-Hamiltonian.
科研通智能强力驱动
Strongly Powered by AbleSci AI