A Deep Learning Network Approach to <italic>ab initio</italic> Protein Secondary Structure Prediction

深度学习 人工智能 库达 人工神经网络 工作流程 计算机科学 机器学习 并行计算 数据库
作者
Matt Spencer,Jesse Eickholt,Jianlin Cheng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:12 (1): 103-112 被引量:289
标识
DOI:10.1109/tcbb.2014.2343960
摘要

Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Dream发布了新的文献求助10
1秒前
sunbai发布了新的文献求助10
1秒前
equinox发布了新的文献求助10
1秒前
2秒前
2秒前
葛稀驳回了Akim应助
2秒前
3秒前
3秒前
852应助咖褐采纳,获得10
3秒前
3秒前
4秒前
4秒前
张111发布了新的文献求助10
4秒前
hbhbj发布了新的文献求助10
4秒前
TearMarks发布了新的文献求助10
5秒前
所所应助LYZ采纳,获得10
5秒前
吞金完成签到,获得积分10
5秒前
lin发布了新的文献求助10
5秒前
科研通AI6应助小笨嘴采纳,获得10
6秒前
zxf完成签到,获得积分20
7秒前
cassiecx发布了新的文献求助10
7秒前
七七发布了新的文献求助10
7秒前
8秒前
福明明完成签到,获得积分10
8秒前
zxf发布了新的文献求助10
8秒前
9秒前
要努力写文章的小白完成签到,获得积分10
9秒前
FashionBoy应助蜜蜜芪采纳,获得10
9秒前
gwt完成签到,获得积分10
10秒前
fish112发布了新的文献求助10
10秒前
Jing发布了新的文献求助10
10秒前
10秒前
浮游应助畅快的雅青采纳,获得10
11秒前
11秒前
hbhbj发布了新的文献求助10
11秒前
wyp发布了新的文献求助10
12秒前
prode完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058