已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Deep Learning Network Approach to <italic>ab initio</italic> Protein Secondary Structure Prediction

深度学习 人工智能 库达 人工神经网络 工作流程 计算机科学 机器学习 并行计算 数据库
作者
Matt Spencer,Jesse Eickholt,Jianlin Cheng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:12 (1): 103-112 被引量:289
标识
DOI:10.1109/tcbb.2014.2343960
摘要

Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sera发布了新的文献求助10
1秒前
1秒前
LZL完成签到 ,获得积分10
2秒前
3秒前
Akim应助gulugulu采纳,获得10
3秒前
5秒前
LIUDEHUA发布了新的文献求助10
5秒前
Cris发布了新的文献求助10
6秒前
美好斓发布了新的文献求助10
6秒前
Orange应助yx采纳,获得10
8秒前
yeeming应助LonelyCMA采纳,获得20
8秒前
Hello应助平常的念柏采纳,获得10
8秒前
8秒前
LYZSh发布了新的文献求助10
9秒前
彭于晏应助LIUDEHUA采纳,获得10
10秒前
13秒前
Spine完成签到,获得积分10
13秒前
lukescholar完成签到,获得积分10
14秒前
打打应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
娜娜完成签到 ,获得积分10
15秒前
lin完成签到 ,获得积分10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
16秒前
浮游应助科研通管家采纳,获得30
16秒前
浮游应助科研通管家采纳,获得30
16秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
漂亮代荷发布了新的文献求助10
16秒前
L2951发布了新的文献求助10
17秒前
18秒前
18秒前
woleaisa发布了新的文献求助10
18秒前
Zzy完成签到,获得积分10
19秒前
今后应助123采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508881
求助须知:如何正确求助?哪些是违规求助? 4603946
关于积分的说明 14488550
捐赠科研通 4538527
什么是DOI,文献DOI怎么找? 2487057
邀请新用户注册赠送积分活动 1469561
关于科研通互助平台的介绍 1441720