A Deep Learning Network Approach to <italic>ab initio</italic> Protein Secondary Structure Prediction

深度学习 人工智能 库达 人工神经网络 工作流程 计算机科学 机器学习 并行计算 数据库
作者
Matt Spencer,Jesse Eickholt,Jianlin Cheng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:12 (1): 103-112 被引量:289
标识
DOI:10.1109/tcbb.2014.2343960
摘要

Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bunny完成签到,获得积分10
刚刚
昵称完成签到,获得积分20
刚刚
陈龙发布了新的文献求助10
刚刚
1秒前
1秒前
和谐白云完成签到,获得积分10
2秒前
ruru发布了新的文献求助10
2秒前
沉默的倔驴应助fxx采纳,获得10
2秒前
2秒前
3秒前
4秒前
吕凯良发布了新的文献求助10
5秒前
5秒前
5秒前
lhl完成签到,获得积分10
5秒前
6秒前
整齐夏旋发布了新的文献求助10
7秒前
追寻半仙发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
打打应助虚心沂采纳,获得10
8秒前
Rhea发布了新的文献求助10
9秒前
9秒前
追光者发布了新的文献求助10
10秒前
jialin完成签到,获得积分10
11秒前
11秒前
fjn完成签到,获得积分10
11秒前
上官若男应助levie采纳,获得10
12秒前
好好书童发布了新的文献求助10
12秒前
Allen发布了新的文献求助10
12秒前
Ava应助伊莱恩采纳,获得10
12秒前
科研通AI6应助上官采纳,获得10
13秒前
烟花应助叶帆采纳,获得10
14秒前
latata完成签到,获得积分10
14秒前
15秒前
15秒前
恩恩灬发布了新的文献求助10
15秒前
张远最帅完成签到,获得积分10
15秒前
15秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588375
求助须知:如何正确求助?哪些是违规求助? 4671508
关于积分的说明 14787418
捐赠科研通 4625221
什么是DOI,文献DOI怎么找? 2531826
邀请新用户注册赠送积分活动 1500389
关于科研通互助平台的介绍 1468314