Highly ordered mesoporous carbons and silicas with ultralarge accessible pores have been successfully synthesized by using laboratory-made poly(ethylene oxide)-b-polystyrene (PEO-b-PS) diblock copolymers as templates via the evaporation-induced self-assembly (EISA) approach. Resols and tetraethyl orthosilicate (TEOS) serve as carbon and silica precursors, respectively. Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) measurements show that the mesoporous carbons (denoted as C-FDU-18) possess face centered cubic closed-packing (fcc) mesostructure (Fm3̄m) with large-domain ordering. N2 sorption isotherms reveal a large mesopore at the mean value of 22.6 nm with a narrow pore-size distribution. Mesoporous silicas (Si-FDU-18) also display a highly ordered fcc closed-packing mesostructure with an ultralarge unit cell (a = 54.6 nm). A hydrothermal recrystallization was introduced for the first time to produce micropores in thick silica walls (∼7.7 nm) and thus to generate ultralarge accessible mesopores (30.8 nm). Notably, the amphiphilic diblock copolymer with high molecular weight (PEO125-PS230, 29700 g mol-1) in this report was prepared via a simple method of atom transfer radical polymerization (ATRP). It can be easily available for chemists even without any experience in polymer synthesis.