生物
端粒
双着丝粒染色体
基因组不稳定性
染色体不稳定性
爱泼斯坦-巴尔病毒
染色体易位
非整倍体
病毒
变色
DNA损伤
病毒学
核型
分子生物学
人口
遗传学
癌症研究
染色体
DNA
基因
人口学
社会学
作者
Sandrine Lacoste,Emilia Wiecheć,A G dos Santos Silva,Amanda Guffei,G. J. Williams,M. Lowbeer,K Benedek,Marie Arsenian‐Henriksson,George Klein,Sabine Mai
出处
期刊:Oncogene
[Springer Nature]
日期:2009-11-02
卷期号:29 (4): 503-515
被引量:76
摘要
The Epstein–Barr virus (EBV) is carried by more than 90% of the adult world population and has been implicated in several human malignancies. Its ability to induce unlimited in vitro proliferation of B cells is frequently used to generate lymphoblastoid cell lines (LCLs). In this study, we have investigated the evolution of two LCLs up to 25 weeks after EBV infection. LCLs were karyotyped once a month by spectral karyotyping (SKY). LCLs but not mitogen-activated B cells showed evidence of DNA damage and DNA damage response within the first 2 weeks. After 4 weeks, the former, but not the latter, showed a high level of non-clonal structural aberrations, mainly deletions, fragments, dicentric chromosomes and unbalanced translocations. Genomic instability decreased thereafter over time. Nonrandom aneuploidy 12 weeks after infection showed clonal evolution in culture. After 25 weeks post-infection, most cells exhibited karyotypic stability. Chromosomal aberrations were compatible with telomere dysfunction, although in the absence of telomere shortening. The telomere capping protein TRF2 was partially displaced from telomeres in EBV-infected cells, suggesting an EBV-mediated uncapping problem. In conclusion, this study suggests that DNA damage and telomere dysfunction contribute to EBV-related chromosomal instability in early LCLs.
科研通智能强力驱动
Strongly Powered by AbleSci AI