Passive radiative cooling below ambient air temperature under direct sunlight

辐射冷却 阳光 被动冷却 环境科学 天空 大气科学 主动冷却 白天 材料科学 辐射传输 热的 光学 气象学 空气冷却 物理 热力学
作者
Aaswath P. Raman,Marc Abou Anoma,Linxiao Zhu,Eden Rephaeli,Shanhui Fan
出处
期刊:Nature [Nature Portfolio]
卷期号:515 (7528): 540-544 被引量:2606
标识
DOI:10.1038/nature13883
摘要

Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
像猫的狗完成签到 ,获得积分10
1秒前
胜胜糖完成签到 ,获得积分10
5秒前
Zhao完成签到 ,获得积分10
8秒前
Kitty完成签到,获得积分10
9秒前
12秒前
W.X.完成签到,获得积分10
14秒前
yydssss完成签到,获得积分10
17秒前
今后应助zpl采纳,获得10
17秒前
世上僅有的榮光之路完成签到,获得积分0
19秒前
20秒前
CYYDNDB完成签到 ,获得积分10
20秒前
zhoull完成签到 ,获得积分10
20秒前
牛牛完成签到,获得积分10
23秒前
23秒前
注水萝卜完成签到 ,获得积分10
23秒前
Jackylee应助黛薇采纳,获得10
24秒前
HCKACECE完成签到 ,获得积分10
28秒前
nicheng完成签到 ,获得积分0
32秒前
小文完成签到 ,获得积分10
37秒前
刘zx完成签到,获得积分10
40秒前
李健应助科研通管家采纳,获得10
42秒前
英俊的铭应助科研通管家采纳,获得10
42秒前
Qianbaor68完成签到,获得积分10
42秒前
LZQ应助科研通管家采纳,获得10
42秒前
42秒前
monned完成签到 ,获得积分10
43秒前
初楠完成签到,获得积分10
47秒前
皮皮虾完成签到,获得积分10
48秒前
樊振南完成签到 ,获得积分10
48秒前
鸽子的迷信完成签到,获得积分10
49秒前
foreknowledge完成签到,获得积分10
50秒前
伊一完成签到,获得积分10
53秒前
科研通AI5应助引子采纳,获得10
54秒前
君莫笑完成签到,获得积分10
59秒前
Lucas应助周周采纳,获得10
1分钟前
hyf完成签到 ,获得积分10
1分钟前
1分钟前
科研小民工应助大道要熬采纳,获得100
1分钟前
1分钟前
1分钟前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709230
求助须知:如何正确求助?哪些是违规求助? 3257371
关于积分的说明 9904407
捐赠科研通 2970238
什么是DOI,文献DOI怎么找? 1629103
邀请新用户注册赠送积分活动 772442
科研通“疑难数据库(出版商)”最低求助积分说明 743806