已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Texture-Based Analysis of COPD: A Data-Driven Approach

人工智能 模式识别(心理学) 直方图 慢性阻塞性肺病 接收机工作特性 计算机科学 分类器(UML) 数学 医学 图像(数学) 机器学习 精神科
作者
Lauge Sørensen,Mads Nielsen,Pechin Lo,Haseem Ashraf,Jesper Holst Pedersen,Marleen de Bruijne
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:31 (1): 70-78 被引量:83
标识
DOI:10.1109/tmi.2011.2164931
摘要

This study presents a fully automatic, data-driven approach for texture-based quantitative analysis of chronic obstructive pulmonary disease (COPD) in pulmonary computed tomography (CT) images.The approach uses supervised learning where the class labels are, in contrast to previous work, based on measured lung function instead of on manually annotated regions of interest (ROIs).A quantitative measure of COPD is obtained by fusing COPD probabilities computed in ROIs within the lung fields where the individual ROI probabilities are computed using a k nearest neighbor (kNN) classifier.The distance between two ROIs in the kNN classifier is computed as the textural dissimilarity between the ROIs, where the ROI texture is described by histograms of filter responses from a multi-scale, rotation invariant Gaussian filter bank.The method was trained on 400 images from a lung cancer screening trial and subsequently applied to classify 200 independent images from the same screening trial.The texture-based measure was significantly better at discriminating between subjects with and without COPD than were the two most common quantitative measures of COPD in the literature, which are based on density.The proposed measure achieved an area under the receiver operating characteristic curve (AUC) of 0.713 whereas the best performing density measure achieved an AUC of 0.598.Further, the proposed measure is as reproducible as the density measures, and there were indications that it correlates better with lung function and is less influenced by inspiration level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
6秒前
7秒前
無駄完成签到,获得积分10
9秒前
今后应助斯文奇迹采纳,获得10
9秒前
Kelly飞啊发布了新的文献求助80
10秒前
深情安青应助mosisa采纳,获得10
10秒前
12秒前
13秒前
Ww发布了新的文献求助10
15秒前
17秒前
xalone发布了新的文献求助10
18秒前
叙余完成签到 ,获得积分10
19秒前
斯文静竹完成签到,获得积分10
20秒前
舒心凡应助暮雨昨歇采纳,获得50
20秒前
今后应助李李05采纳,获得10
21秒前
TwentyNine完成签到 ,获得积分10
21秒前
22秒前
LS完成签到,获得积分10
27秒前
悍匪小保镖完成签到,获得积分10
32秒前
寻道图强应助文献猎手采纳,获得30
33秒前
34秒前
充电宝应助Harb采纳,获得10
35秒前
36秒前
孤灯剑客发布了新的文献求助10
38秒前
yznfly应助聪慧的紫菜采纳,获得20
39秒前
研友_LXOWx8发布了新的文献求助10
41秒前
虞美人完成签到 ,获得积分10
42秒前
無駄关注了科研通微信公众号
43秒前
濮阳伯云完成签到,获得积分10
44秒前
华仔应助孙晨维采纳,获得10
44秒前
46秒前
JamesPei应助胡说八道采纳,获得10
46秒前
聆听发布了新的文献求助10
46秒前
Lucas应助wdw2501采纳,获得10
47秒前
47秒前
小沐牧呀完成签到,获得积分10
47秒前
dd完成签到 ,获得积分10
48秒前
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663892
求助须知:如何正确求助?哪些是违规求助? 4854151
关于积分的说明 15106245
捐赠科研通 4822200
什么是DOI,文献DOI怎么找? 2581283
邀请新用户注册赠送积分活动 1535500
关于科研通互助平台的介绍 1493747