Texture-Based Analysis of COPD: A Data-Driven Approach

人工智能 模式识别(心理学) 直方图 慢性阻塞性肺病 接收机工作特性 计算机科学 分类器(UML) 数学 医学 图像(数学) 机器学习 精神科
作者
Lauge Sørensen,Mads Nielsen,Pechin Lo,Haseem Ashraf,Jesper Holst Pedersen,Marleen de Bruijne
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:31 (1): 70-78 被引量:83
标识
DOI:10.1109/tmi.2011.2164931
摘要

This study presents a fully automatic, data-driven approach for texture-based quantitative analysis of chronic obstructive pulmonary disease (COPD) in pulmonary computed tomography (CT) images.The approach uses supervised learning where the class labels are, in contrast to previous work, based on measured lung function instead of on manually annotated regions of interest (ROIs).A quantitative measure of COPD is obtained by fusing COPD probabilities computed in ROIs within the lung fields where the individual ROI probabilities are computed using a k nearest neighbor (kNN) classifier.The distance between two ROIs in the kNN classifier is computed as the textural dissimilarity between the ROIs, where the ROI texture is described by histograms of filter responses from a multi-scale, rotation invariant Gaussian filter bank.The method was trained on 400 images from a lung cancer screening trial and subsequently applied to classify 200 independent images from the same screening trial.The texture-based measure was significantly better at discriminating between subjects with and without COPD than were the two most common quantitative measures of COPD in the literature, which are based on density.The proposed measure achieved an area under the receiver operating characteristic curve (AUC) of 0.713 whereas the best performing density measure achieved an AUC of 0.598.Further, the proposed measure is as reproducible as the density measures, and there were indications that it correlates better with lung function and is less influenced by inspiration level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静的明辉完成签到,获得积分10
2秒前
布布爱吃炸鸡完成签到,获得积分10
5秒前
周兰兰完成签到,获得积分10
5秒前
5秒前
6秒前
旧旧完成签到 ,获得积分10
7秒前
老八完成签到,获得积分10
9秒前
落寞蓝天发布了新的文献求助10
12秒前
勤奋的热狗完成签到 ,获得积分10
15秒前
happy完成签到,获得积分10
17秒前
20秒前
宜醉宜游宜睡应助lanbing802采纳,获得10
20秒前
21秒前
宣洋发布了新的文献求助10
24秒前
托塔小姐完成签到,获得积分10
24秒前
在水一方应助清脆的丹南采纳,获得10
26秒前
余琳发布了新的文献求助10
26秒前
28秒前
旧梦发布了新的文献求助10
29秒前
32秒前
清脆的丹南完成签到,获得积分10
32秒前
34秒前
ywq发布了新的文献求助10
34秒前
35秒前
宣洋完成签到,获得积分20
35秒前
35秒前
wllllll发布了新的文献求助20
37秒前
38秒前
坚强的虔发布了新的文献求助10
39秒前
40秒前
lk完成签到,获得积分10
40秒前
秋雅发布了新的文献求助10
40秒前
你的益达ymh完成签到,获得积分10
40秒前
41秒前
科研通AI2S应助wisteety采纳,获得10
41秒前
海洋完成签到,获得积分20
42秒前
42秒前
ossantu发布了新的文献求助10
42秒前
43秒前
余琳完成签到,获得积分10
44秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161053
求助须知:如何正确求助?哪些是违规求助? 2812453
关于积分的说明 7895410
捐赠科研通 2471252
什么是DOI,文献DOI怎么找? 1315934
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094