Texture-Based Analysis of COPD: A Data-Driven Approach

人工智能 模式识别(心理学) 直方图 慢性阻塞性肺病 接收机工作特性 计算机科学 分类器(UML) 数学 医学 图像(数学) 机器学习 精神科
作者
Lauge Sørensen,Mads Nielsen,Pechin Lo,Haseem Ashraf,Jesper Holst Pedersen,Marleen de Bruijne
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:31 (1): 70-78 被引量:83
标识
DOI:10.1109/tmi.2011.2164931
摘要

This study presents a fully automatic, data-driven approach for texture-based quantitative analysis of chronic obstructive pulmonary disease (COPD) in pulmonary computed tomography (CT) images.The approach uses supervised learning where the class labels are, in contrast to previous work, based on measured lung function instead of on manually annotated regions of interest (ROIs).A quantitative measure of COPD is obtained by fusing COPD probabilities computed in ROIs within the lung fields where the individual ROI probabilities are computed using a k nearest neighbor (kNN) classifier.The distance between two ROIs in the kNN classifier is computed as the textural dissimilarity between the ROIs, where the ROI texture is described by histograms of filter responses from a multi-scale, rotation invariant Gaussian filter bank.The method was trained on 400 images from a lung cancer screening trial and subsequently applied to classify 200 independent images from the same screening trial.The texture-based measure was significantly better at discriminating between subjects with and without COPD than were the two most common quantitative measures of COPD in the literature, which are based on density.The proposed measure achieved an area under the receiver operating characteristic curve (AUC) of 0.713 whereas the best performing density measure achieved an AUC of 0.598.Further, the proposed measure is as reproducible as the density measures, and there were indications that it correlates better with lung function and is less influenced by inspiration level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天天蓝发布了新的文献求助10
刚刚
NexusExplorer应助七田皿采纳,获得10
刚刚
好运常在发布了新的文献求助10
刚刚
wang发布了新的文献求助10
刚刚
斯文败类应助清醒采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
Tian郡王完成签到,获得积分10
1秒前
又又猩发布了新的文献求助10
2秒前
柠檬不萌完成签到,获得积分20
2秒前
JamesPei应助飞快的邴采纳,获得10
3秒前
3秒前
烟花应助fionazhangdr采纳,获得20
3秒前
要减肥南霜完成签到 ,获得积分10
4秒前
哇哇哇发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
mmddlj发布了新的文献求助10
4秒前
5秒前
fang发布了新的文献求助10
5秒前
shenerqing发布了新的文献求助150
5秒前
zhang完成签到,获得积分10
5秒前
舒服的鱼完成签到,获得积分10
5秒前
LW发布了新的文献求助10
6秒前
烟花应助豆豆豆莎包采纳,获得10
7秒前
bkagyin应助hxj采纳,获得10
7秒前
小qin发布了新的文献求助10
7秒前
9秒前
十一发布了新的文献求助10
9秒前
stardust314应助小喜采纳,获得10
9秒前
9秒前
9秒前
眼睛大的新之完成签到,获得积分10
9秒前
CipherSage应助眼睛大萃采纳,获得10
9秒前
黄任行完成签到,获得积分10
10秒前
Lee完成签到 ,获得积分20
10秒前
香蕉觅云应助initia采纳,获得10
10秒前
楠沅完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728188
求助须知:如何正确求助?哪些是违规求助? 5311904
关于积分的说明 15313531
捐赠科研通 4875514
什么是DOI,文献DOI怎么找? 2618817
邀请新用户注册赠送积分活动 1568419
关于科研通互助平台的介绍 1525058