Texture-Based Analysis of COPD: A Data-Driven Approach

人工智能 模式识别(心理学) 直方图 慢性阻塞性肺病 接收机工作特性 计算机科学 分类器(UML) 数学 医学 图像(数学) 机器学习 精神科
作者
Lauge Sørensen,Mads Nielsen,Pechin Lo,Haseem Ashraf,Jesper Holst Pedersen,Marleen de Bruijne
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:31 (1): 70-78 被引量:83
标识
DOI:10.1109/tmi.2011.2164931
摘要

This study presents a fully automatic, data-driven approach for texture-based quantitative analysis of chronic obstructive pulmonary disease (COPD) in pulmonary computed tomography (CT) images.The approach uses supervised learning where the class labels are, in contrast to previous work, based on measured lung function instead of on manually annotated regions of interest (ROIs).A quantitative measure of COPD is obtained by fusing COPD probabilities computed in ROIs within the lung fields where the individual ROI probabilities are computed using a k nearest neighbor (kNN) classifier.The distance between two ROIs in the kNN classifier is computed as the textural dissimilarity between the ROIs, where the ROI texture is described by histograms of filter responses from a multi-scale, rotation invariant Gaussian filter bank.The method was trained on 400 images from a lung cancer screening trial and subsequently applied to classify 200 independent images from the same screening trial.The texture-based measure was significantly better at discriminating between subjects with and without COPD than were the two most common quantitative measures of COPD in the literature, which are based on density.The proposed measure achieved an area under the receiver operating characteristic curve (AUC) of 0.713 whereas the best performing density measure achieved an AUC of 0.598.Further, the proposed measure is as reproducible as the density measures, and there were indications that it correlates better with lung function and is less influenced by inspiration level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JZ2021完成签到,获得积分10
刚刚
情怀应助愉快的莹采纳,获得10
刚刚
无花果应助机灵的安青采纳,获得10
1秒前
1秒前
tianfx3完成签到,获得积分10
1秒前
彭于晏应助谦让念波采纳,获得10
1秒前
2秒前
chen完成签到,获得积分10
2秒前
wang可爱额完成签到 ,获得积分10
3秒前
wjclear发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
落寞幻翠发布了新的文献求助10
3秒前
zhanglj完成签到,获得积分10
4秒前
侃侃发布了新的文献求助10
4秒前
Ar完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
头哥应助11采纳,获得10
7秒前
rabbit完成签到,获得积分10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
传奇3应助李树玉采纳,获得10
9秒前
10秒前
汉堡包应助林菲菲采纳,获得10
10秒前
杨德帅发布了新的文献求助10
10秒前
Jasper应助施戎采纳,获得10
11秒前
领导范儿应助cake777采纳,获得10
12秒前
57r7uf完成签到,获得积分10
12秒前
12秒前
浮云发布了新的文献求助20
12秒前
asdfqwer发布了新的文献求助10
12秒前
小醒笑哈哈完成签到 ,获得积分10
14秒前
南北完成签到,获得积分10
15秒前
wjclear完成签到,获得积分10
15秒前
顾矜应助你好采纳,获得10
15秒前
Seven完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791