Texture-Based Analysis of COPD: A Data-Driven Approach

人工智能 模式识别(心理学) 直方图 慢性阻塞性肺病 接收机工作特性 计算机科学 分类器(UML) 数学 医学 图像(数学) 机器学习 精神科
作者
Lauge Sørensen,Mads Nielsen,Pechin Lo,Haseem Ashraf,Jesper Holst Pedersen,Marleen de Bruijne
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:31 (1): 70-78 被引量:83
标识
DOI:10.1109/tmi.2011.2164931
摘要

This study presents a fully automatic, data-driven approach for texture-based quantitative analysis of chronic obstructive pulmonary disease (COPD) in pulmonary computed tomography (CT) images.The approach uses supervised learning where the class labels are, in contrast to previous work, based on measured lung function instead of on manually annotated regions of interest (ROIs).A quantitative measure of COPD is obtained by fusing COPD probabilities computed in ROIs within the lung fields where the individual ROI probabilities are computed using a k nearest neighbor (kNN) classifier.The distance between two ROIs in the kNN classifier is computed as the textural dissimilarity between the ROIs, where the ROI texture is described by histograms of filter responses from a multi-scale, rotation invariant Gaussian filter bank.The method was trained on 400 images from a lung cancer screening trial and subsequently applied to classify 200 independent images from the same screening trial.The texture-based measure was significantly better at discriminating between subjects with and without COPD than were the two most common quantitative measures of COPD in the literature, which are based on density.The proposed measure achieved an area under the receiver operating characteristic curve (AUC) of 0.713 whereas the best performing density measure achieved an AUC of 0.598.Further, the proposed measure is as reproducible as the density measures, and there were indications that it correlates better with lung function and is less influenced by inspiration level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
游一发布了新的文献求助10
刚刚
慕青应助seanx采纳,获得10
刚刚
刚刚
雨中小王应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得30
刚刚
1秒前
雨中小王应助科研通管家采纳,获得10
1秒前
不配.应助科研通管家采纳,获得200
1秒前
李健应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
Pendragon发布了新的文献求助10
2秒前
2秒前
2秒前
魔法少女猪壮壮完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
星期五完成签到,获得积分10
4秒前
阁主完成签到,获得积分10
5秒前
传奇3应助dd采纳,获得10
5秒前
乐乐应助汤婆婆采纳,获得10
6秒前
苹果亦巧完成签到,获得积分10
6秒前
....完成签到 ,获得积分10
6秒前
严婉蓉完成签到 ,获得积分10
6秒前
7秒前
Genius发布了新的文献求助10
7秒前
科目三应助66采纳,获得10
7秒前
FashionBoy应助berg采纳,获得10
8秒前
小鱼美美发布了新的文献求助10
10秒前
星辰大海应助苹果亦巧采纳,获得30
10秒前
全明星阿杜完成签到,获得积分10
11秒前
YTWen完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594267
求助须知:如何正确求助?哪些是违规求助? 4679962
关于积分的说明 14812493
捐赠科研通 4646674
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502831
关于科研通互助平台的介绍 1469497