A nonlinear fatigue damage accumulation model considering strength degradation and its applications to fatigue reliability analysis

残余强度 非线性系统 降级(电信) 材料科学 可靠性(半导体) 结构工程 残余物 疲劳极限 振动疲劳 古德曼关系 压力(语言学) 残余应力 应力集中 复合材料 计算机科学 疲劳试验 断裂力学 工程类 算法 哲学 物理 电信 量子力学 功率(物理) 语言学
作者
Rong Yuan,Haiqing Li,Hong‐Zhong Huang,Shun‐Peng Zhu,Huiying Gao
出处
期刊:International Journal of Damage Mechanics [SAGE]
卷期号:24 (5): 646-662 被引量:69
标识
DOI:10.1177/1056789514544228
摘要

Fatigue is a damage accumulation process in which the material property deteriorates and degenerates continuously under cyclic loading. The analysis of damage accumulation plays a key role in preventing the occurrence of fatigue failures, and the damage evolution mechanism is one of the important focuses of fatigue behavior. In this paper, a residual strength degradation model according to the stress–strength interference (SSI) model is introduced firstly; then a modified nonlinear fatigue damage accumulation model based on the Manson–Halford theory is proposed. Combining the proposed nonlinear damage accumulation model with the residual strength degradation model, a new method is developed for fatigue life prediction under constant and variable amplitude loading, which considers not only the effects of load interactions, but also the phenomenon of strength degradation of materials induced by loading history, and it can be used to predict the reliability and fatigue life of mechanical components. Moreover, the material parameter for the residual strength degradation can be obtained directly from S–N curve without running extra experiments. Finally, experimental data are used to compare with the predicted value in order to demonstrate the proposed residual strength degradation model. In addition, two sets of experimental data are also used to verify the proposed nonlinear fatigue damage accumulation model which is applied to predict fatigue life under two-stress level loading and reliability prediction under multi-stress level loading. The results show that the proposed method has a good agreement between the experimental data and predicted values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miswaterlily完成签到,获得积分10
刚刚
温婉的香水完成签到 ,获得积分10
刚刚
CodeCraft应助虚幻树叶采纳,获得10
刚刚
烟花应助嘲风采纳,获得10
1秒前
缓慢冬莲发布了新的文献求助10
1秒前
小欧医生完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
隐形曼青应助AoAoo采纳,获得10
2秒前
2秒前
年轻半雪完成签到,获得积分10
3秒前
neiltang完成签到,获得积分20
3秒前
本杰明巴克应助小陆采纳,获得10
3秒前
大模型应助1002SHIB采纳,获得10
4秒前
希望天下0贩的0应助海潮采纳,获得10
4秒前
5秒前
神光发布了新的文献求助10
6秒前
Charail发布了新的文献求助10
7秒前
helium发布了新的文献求助10
7秒前
日暮炊烟完成签到 ,获得积分0
7秒前
8秒前
村村完成签到,获得积分10
8秒前
linguobin发布了新的文献求助10
9秒前
渣渣XM发布了新的文献求助10
9秒前
大模型应助萌新采纳,获得10
9秒前
Jadon完成签到 ,获得积分10
9秒前
mula发布了新的文献求助30
9秒前
懒惰扼杀激情完成签到 ,获得积分10
10秒前
Chenly完成签到,获得积分10
12秒前
李燕鑫发布了新的文献求助10
12秒前
Li完成签到,获得积分20
12秒前
caq完成签到,获得积分10
13秒前
zdy完成签到,获得积分10
13秒前
15秒前
15秒前
文森特的向日葵完成签到,获得积分10
16秒前
aldehyde应助自由的威采纳,获得10
17秒前
汉堡包应助李燕鑫采纳,获得10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012