Systematic analysis of global features and model building for recognition of antimicrobial peptides

抗菌肽 计算机科学 背景(考古学) 复制 构造(python库) 人工智能 机器学习 特征(语言学) 光学(聚焦) Web服务器 抗菌剂 数据科学 互联网 生物 万维网 光学 物理 哲学 古生物学 统计 程序设计语言 微生物学 语言学 数学
作者
Elena G. Randou,Daniel Veltri,Amarda Shehu
标识
DOI:10.1109/iccabs.2013.6629215
摘要

With growing bacterial resistance to antibiotics, it is becoming paramount to seek out new antibacterials. Antimicrobial peptides (AMPs) provide interesting templates for antibacterial drug research. Our understanding of what it is that confers to these peptides their antimicrobial activity is currently poor. Yet, such understanding is the first step towards modification or design of novel AMPs for treatment. Research in machine learning is beginning to focus on recognition of AMPs from non-AMPs as a means of understanding what features confer to an AMP its activity. Methods either seek new features and test them in the context of classification or measure the classification power of features provided by biologists. In this paper, we provide a rigorous evaluation of features provided by a biologist or resulting from a combination of experimental and computational research. We present a statistics-based approach to carefully measure the significance of each feature and use this knowledge to construct predictive models. We present here logistic regression models, which are capable of associating probabilities on whether a peptide is antimicrobial or not with the feature values of the peptide. We provide access to the proposed methodology through a web server. The server allows users to replicate the findings in this paper or evaluate their own features.We believe research in this direction will allow the community to make further progress and elucidate features that capture antimicrobial activity. This is an important first step towards assisting modification and/or de novo design of AMPs in the wet laboratory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴的小天鹅完成签到,获得积分10
1秒前
1秒前
vcuni发布了新的文献求助10
1秒前
卡琳发布了新的文献求助10
2秒前
快乐凌寒应助舒心梦玉采纳,获得10
2秒前
sbrcpyf发布了新的文献求助10
2秒前
酷波er应助光亮的楼房采纳,获得10
3秒前
SciGPT应助colaice采纳,获得10
3秒前
香蕉觅云应助小点点采纳,获得10
3秒前
皮半鬼发布了新的文献求助10
4秒前
4秒前
schuang完成签到,获得积分10
5秒前
大米发布了新的文献求助10
5秒前
5秒前
sdf完成签到,获得积分10
5秒前
6秒前
科研通AI5应助Guo采纳,获得10
6秒前
sbrcpyf完成签到,获得积分10
7秒前
zho应助张华采纳,获得50
7秒前
Prince完成签到,获得积分10
8秒前
8秒前
liming完成签到,获得积分10
8秒前
47吃不够yu发布了新的文献求助10
9秒前
李小布发布了新的文献求助10
9秒前
雪糕发布了新的文献求助10
9秒前
111发布了新的文献求助10
10秒前
科研通AI5应助唯我文乃采纳,获得10
10秒前
糊糊完成签到,获得积分10
10秒前
10秒前
朴素听兰完成签到,获得积分10
10秒前
Jeff完成签到,获得积分10
11秒前
li完成签到,获得积分10
12秒前
依米zhang发布了新的文献求助10
13秒前
14秒前
YYiijj完成签到 ,获得积分10
14秒前
15秒前
zzz完成签到,获得积分10
15秒前
汉堡包应助开心的小馒头采纳,获得10
16秒前
zzzq应助zy采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3582022
求助须知:如何正确求助?哪些是违规求助? 3151548
关于积分的说明 9488290
捐赠科研通 2853711
什么是DOI,文献DOI怎么找? 1568809
邀请新用户注册赠送积分活动 734810
科研通“疑难数据库(出版商)”最低求助积分说明 720809