Systematic analysis of global features and model building for recognition of antimicrobial peptides

抗菌肽 计算机科学 背景(考古学) 复制 构造(python库) 人工智能 机器学习 特征(语言学) 光学(聚焦) Web服务器 抗菌剂 数据科学 互联网 生物 万维网 光学 物理 哲学 古生物学 统计 程序设计语言 微生物学 语言学 数学
作者
Elena G. Randou,Daniel Veltri,Amarda Shehu
标识
DOI:10.1109/iccabs.2013.6629215
摘要

With growing bacterial resistance to antibiotics, it is becoming paramount to seek out new antibacterials. Antimicrobial peptides (AMPs) provide interesting templates for antibacterial drug research. Our understanding of what it is that confers to these peptides their antimicrobial activity is currently poor. Yet, such understanding is the first step towards modification or design of novel AMPs for treatment. Research in machine learning is beginning to focus on recognition of AMPs from non-AMPs as a means of understanding what features confer to an AMP its activity. Methods either seek new features and test them in the context of classification or measure the classification power of features provided by biologists. In this paper, we provide a rigorous evaluation of features provided by a biologist or resulting from a combination of experimental and computational research. We present a statistics-based approach to carefully measure the significance of each feature and use this knowledge to construct predictive models. We present here logistic regression models, which are capable of associating probabilities on whether a peptide is antimicrobial or not with the feature values of the peptide. We provide access to the proposed methodology through a web server. The server allows users to replicate the findings in this paper or evaluate their own features.We believe research in this direction will allow the community to make further progress and elucidate features that capture antimicrobial activity. This is an important first step towards assisting modification and/or de novo design of AMPs in the wet laboratory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQ发布了新的文献求助10
刚刚
Pom发布了新的文献求助10
刚刚
和尘同光完成签到,获得积分10
刚刚
zh发布了新的文献求助10
1秒前
尹文发布了新的文献求助10
1秒前
1秒前
负责身影发布了新的文献求助10
1秒前
香蕉觅云应助乘风采纳,获得10
1秒前
1秒前
2秒前
pocha_cloud发布了新的文献求助10
2秒前
佳子发布了新的文献求助10
2秒前
2秒前
Timo干物类完成签到,获得积分10
2秒前
YY发布了新的文献求助30
2秒前
3秒前
3秒前
3秒前
3秒前
哈耶完成签到,获得积分20
3秒前
点墨染清发布了新的文献求助10
4秒前
4秒前
CipherSage应助负责冰凡采纳,获得10
5秒前
左手树完成签到,获得积分10
5秒前
古月完成签到,获得积分10
6秒前
6秒前
fengha完成签到,获得积分10
6秒前
顺利毕业发布了新的文献求助10
6秒前
飘逸成威完成签到,获得积分10
6秒前
6秒前
大方的蓝完成签到 ,获得积分10
7秒前
7秒前
7秒前
活泼的飞扬完成签到,获得积分10
7秒前
8秒前
哈耶发布了新的文献求助10
8秒前
lingling发布了新的文献求助10
9秒前
清清完成签到,获得积分10
9秒前
科研通AI2S应助小赵采纳,获得10
10秒前
段晓倩发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4556298
求助须知:如何正确求助?哪些是违规求助? 3984399
关于积分的说明 12335572
捐赠科研通 3654388
什么是DOI,文献DOI怎么找? 2013134
邀请新用户注册赠送积分活动 1048076
科研通“疑难数据库(出版商)”最低求助积分说明 936488