骨骼肌
血管生成
细胞生物学
心肌细胞
生物
刺激
化学
内科学
内分泌学
医学
作者
Ylva Hellsten,Birgitte Høier
出处
期刊:Biochemical Society Transactions
[Portland Press]
日期:2014-11-17
卷期号:42 (6): 1616-1622
被引量:38
摘要
In human skeletal muscle, the capillary net readily adapts according to the level of muscular activity to allow for optimal diffusion conditions for oxygen from the blood to the muscle. Animal studies have demonstrated that stimulation of capillary growth in skeletal muscle can occur either by mechanical or by chemical signalling. Mechanical signals originate from shear stress forces on the endothelial cell layer induced by the blood flowing through the vessel, but include also mechanical stretch and compression of the vascular structures and the surrounding tissue, as the muscle contracts. Depending on the mechanical signal provided, capillary growth may occur either by longitudinal splitting (shear stress) or by sprouting (passive stretch). The mechanical signals initiate angiogenic processes by up-regulation or release of angioregulatory proteins that either promote, modulate or inhibit angiogenesis. A number of such regulatory proteins have been described in skeletal muscle in animal and cell models but also in human skeletal muscle. Important pro-angiogenic factors in skeletal muscle are vascular endothelial growth factor, endothelial nitric oxide synthase and angiopoietin 2, whereas angiostatic factors include thrombospondin-1 and tissue inhibitor of matrix metalloproteinase. Which of these angiogenic factors are up-regulated in the muscle tissue depends on the mechanical and chemical stimulus provided and, consequently, the process by which capillary growth occurs. The present review addresses physiological signals and angiogenic factors in skeletal muscle with a focus on human data.
科研通智能强力驱动
Strongly Powered by AbleSci AI