吸附
碳纳米管
色散(光学)
化学工程
化学极性
氢键
有机化学品
纳米技术
材料科学
化学
有机化学
环境化学
分子
物理
工程类
光学
摘要
Carbon nanotubes (CNTs) have drawn special research attention because of their unique properties and potential applications. This review summarizes the research progress of organic chemical adsorption on CNTs, and will provide useful information for CNT application and risk assessment. Adsorption heterogeneity and hysteresis are two widely recognized features of organic chemical−CNT interactions. However, because different mechanisms may act simultaneously, mainly hydrophobic interactions, π−π bonds, electrostatic interactions, and hydrogen bonds, the prediction of organic chemical adsorption on CNTs is not straightforward. The dominant adsorption mechanism is different for different types of organic chemicals (such as polar and nonpolar), thus different models may be needed to predict organic chemical−CNT interaction. Adsorption mechanisms will be better understood by investigating the effects of properties of both CNTs and organic chemicals along with environmental conditions. Another major factor affecting adsorption by CNTs is their suspendability, which also strongly affects their mobility, exposure, and risk in the environment. Therefore, organic chemical−CNT interactions as affected by CNT dispersion and suspending merit further experimental research. In addition, CNTs have potential applications in water treatment due to their adsorption characteristics. Thus column and pilot studies are needed to evaluate their performance and operational cost.
科研通智能强力驱动
Strongly Powered by AbleSci AI