量子点
光电子学
材料科学
电吸收调制器
太阳能电池
斯托克斯位移
光伏系统
混合太阳能电池
发光
纳米技术
量子点激光器
半导体
聚合物太阳能电池
半导体激光器理论
生态学
生物
作者
Francesco Meinardi,Hunter McDaniel,Francesco Carulli,A Colombo,Kirill A. Velizhanin,Nikolay S. Makarov,Roberto Simonutti,Victor I. Klimov,Sergio Brovelli
标识
DOI:10.1038/nnano.2015.178
摘要
Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I-III-VI2 semiconductors to realize the first large-area quantum dot-luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2-x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect.
科研通智能强力驱动
Strongly Powered by AbleSci AI