Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus.
化学
类胡萝卜素
焦磷酸异戊烯酯
生物
角鲨烯
叶绿体
光合作用
丙炔基转移酶
塑料醌
叶绿素
作者
Jörg Schwender,M. Seemann,Hartmut K. Lichtenthaler,Michel Rohmer
Isoprenoid biosynthesis was investigated in the green alga Scenedesmus obliquus grown heterotrophically on 13C-labelled glucose and acetate. Several isoprenoid compounds were isolated and investigated by 13C-NMR spectroscopy. According to the 13C-labelling pattern indicated by the 13C-NMR spectra, the biosynthesis of all plastidic isoprenoids investigated (prenyl side-chains of chlorophylls and plastoquinone-9, and the carotenoids beta-carotene and lutein), as well as of the non-plastidic cytoplasmic sterols, does not proceed via the classical acetate/mevalonate pathway (which leads from acetyl-CoA via mevalonate to isopentenyl diphosphate), but via the novel glyceraldehyde 3-phosphate/pyruvate route recently detected in eubacteria. Formation of isopentenyl diphosphate involves the condensation of a C2 unit derived from pyruvate decarboxylation with glyceraldehyde 3-phosphate and a transposition yielding the branched C5 skeleton of isoprenic units.