Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization

矩阵范数 矩阵完成 修补 低秩近似 数学优化 奇异值 计算机科学 最优化问题 算法 规范(哲学) 收敛速度 基质(化学分析) 行搜索 秩(图论) 数学 人工智能 图像(数学) 张量(固有定义) 组合数学 计算机网络 纯数学 法学 材料科学 半径 高斯分布 复合材料 特征向量 频道(广播) 计算机安全 物理 政治学 量子力学
作者
Yao Hu,Debing Zhang,Jieping Ye,Xuelong Li,Xiaofei He
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 2117-2130 被引量:816
标识
DOI:10.1109/tpami.2012.271
摘要

Recovering a large matrix from a small subset of its entries is a challenging problem arising in many real applications, such as image inpainting and recommender systems. Many existing approaches formulate this problem as a general low-rank matrix approximation problem. Since the rank operator is nonconvex and discontinuous, most of the recent theoretical studies use the nuclear norm as a convex relaxation. One major limitation of the existing approaches based on nuclear norm minimization is that all the singular values are simultaneously minimized, and thus the rank may not be well approximated in practice. In this paper, we propose to achieve a better approximation to the rank of matrix by truncated nuclear norm, which is given by the nuclear norm subtracted by the sum of the largest few singular values. In addition, we develop a novel matrix completion algorithm by minimizing the Truncated Nuclear Norm. We further develop three efficient iterative procedures, TNNR-ADMM, TNNR-APGL, and TNNR-ADMMAP, to solve the optimization problem. TNNR-ADMM utilizes the alternating direction method of multipliers (ADMM), while TNNR-AGPL applies the accelerated proximal gradient line search method (APGL) for the final optimization. For TNNR-ADMMAP, we make use of an adaptive penalty according to a novel update rule for ADMM to achieve a faster convergence rate. Our empirical study shows encouraging results of the proposed algorithms in comparison to the state-of-the-art matrix completion algorithms on both synthetic and real visual datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
Twonej应助科研通管家采纳,获得30
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
1秒前
wxyshare应助科研通管家采纳,获得10
1秒前
xiaohe应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
zzzxhhr发布了新的文献求助10
3秒前
那年那兔那些事完成签到 ,获得积分10
3秒前
Hello应助泷生采纳,获得10
3秒前
ZYC关闭了ZYC文献求助
4秒前
4秒前
chen完成签到 ,获得积分10
5秒前
Akim应助时尚的靖采纳,获得10
6秒前
6秒前
李嘉衡完成签到 ,获得积分10
6秒前
哈哈镜阿姐应助led灯泡采纳,获得10
6秒前
游佩君完成签到,获得积分10
6秒前
7秒前
胡罗卜完成签到,获得积分10
7秒前
xixi完成签到,获得积分20
7秒前
lyx完成签到,获得积分10
7秒前
Kate完成签到,获得积分10
7秒前
8秒前
jason完成签到,获得积分0
8秒前
9秒前
jyylrl发布了新的文献求助10
10秒前
leo发布了新的文献求助10
12秒前
12秒前
wu发布了新的文献求助10
12秒前
13秒前
siriuswings完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909