Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization

矩阵范数 矩阵完成 修补 低秩近似 数学优化 奇异值 计算机科学 最优化问题 算法 规范(哲学) 收敛速度 基质(化学分析) 行搜索 秩(图论) 数学 人工智能 图像(数学) 张量(固有定义) 组合数学 计算机网络 纯数学 法学 材料科学 半径 高斯分布 复合材料 特征向量 频道(广播) 计算机安全 物理 政治学 量子力学
作者
Yao Hu,Debing Zhang,Jieping Ye,Xuelong Li,Xiaofei He
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 2117-2130 被引量:728
标识
DOI:10.1109/tpami.2012.271
摘要

Recovering a large matrix from a small subset of its entries is a challenging problem arising in many real applications, such as image inpainting and recommender systems. Many existing approaches formulate this problem as a general low-rank matrix approximation problem. Since the rank operator is nonconvex and discontinuous, most of the recent theoretical studies use the nuclear norm as a convex relaxation. One major limitation of the existing approaches based on nuclear norm minimization is that all the singular values are simultaneously minimized, and thus the rank may not be well approximated in practice. In this paper, we propose to achieve a better approximation to the rank of matrix by truncated nuclear norm, which is given by the nuclear norm subtracted by the sum of the largest few singular values. In addition, we develop a novel matrix completion algorithm by minimizing the Truncated Nuclear Norm. We further develop three efficient iterative procedures, TNNR-ADMM, TNNR-APGL, and TNNR-ADMMAP, to solve the optimization problem. TNNR-ADMM utilizes the alternating direction method of multipliers (ADMM), while TNNR-AGPL applies the accelerated proximal gradient line search method (APGL) for the final optimization. For TNNR-ADMMAP, we make use of an adaptive penalty according to a novel update rule for ADMM to achieve a faster convergence rate. Our empirical study shows encouraging results of the proposed algorithms in comparison to the state-of-the-art matrix completion algorithms on both synthetic and real visual datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助cherry采纳,获得10
1秒前
酷酷白猫发布了新的文献求助30
1秒前
1秒前
不配.应助科研通管家采纳,获得20
3秒前
Ava应助科研通管家采纳,获得10
3秒前
yufanhui应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
maox1aoxin应助科研通管家采纳,获得30
3秒前
科目三应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
maox1aoxin应助科研通管家采纳,获得30
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
整齐狗完成签到,获得积分20
4秒前
大聪明发布了新的文献求助10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
yufanhui应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
张宇发布了新的文献求助10
5秒前
跳跃的含双完成签到,获得积分20
5秒前
yufanhui应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160242
求助须知:如何正确求助?哪些是违规求助? 2811282
关于积分的说明 7891712
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315472
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038