Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization

矩阵范数 矩阵完成 修补 低秩近似 数学优化 奇异值 计算机科学 最优化问题 算法 规范(哲学) 收敛速度 基质(化学分析) 行搜索 秩(图论) 数学 人工智能 图像(数学) 张量(固有定义) 组合数学 计算机网络 纯数学 法学 材料科学 半径 高斯分布 复合材料 特征向量 频道(广播) 计算机安全 物理 政治学 量子力学
作者
Yao Hu,Debing Zhang,Jieping Ye,Xuelong Li,Xiaofei He
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 2117-2130 被引量:816
标识
DOI:10.1109/tpami.2012.271
摘要

Recovering a large matrix from a small subset of its entries is a challenging problem arising in many real applications, such as image inpainting and recommender systems. Many existing approaches formulate this problem as a general low-rank matrix approximation problem. Since the rank operator is nonconvex and discontinuous, most of the recent theoretical studies use the nuclear norm as a convex relaxation. One major limitation of the existing approaches based on nuclear norm minimization is that all the singular values are simultaneously minimized, and thus the rank may not be well approximated in practice. In this paper, we propose to achieve a better approximation to the rank of matrix by truncated nuclear norm, which is given by the nuclear norm subtracted by the sum of the largest few singular values. In addition, we develop a novel matrix completion algorithm by minimizing the Truncated Nuclear Norm. We further develop three efficient iterative procedures, TNNR-ADMM, TNNR-APGL, and TNNR-ADMMAP, to solve the optimization problem. TNNR-ADMM utilizes the alternating direction method of multipliers (ADMM), while TNNR-AGPL applies the accelerated proximal gradient line search method (APGL) for the final optimization. For TNNR-ADMMAP, we make use of an adaptive penalty according to a novel update rule for ADMM to achieve a faster convergence rate. Our empirical study shows encouraging results of the proposed algorithms in comparison to the state-of-the-art matrix completion algorithms on both synthetic and real visual datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinL完成签到,获得积分10
刚刚
Na发布了新的文献求助10
刚刚
刚刚
小高完成签到,获得积分10
刚刚
1秒前
慕青应助水果咔咔咔采纳,获得10
2秒前
3秒前
公西傲蕾完成签到,获得积分10
4秒前
4秒前
5秒前
景平完成签到,获得积分10
5秒前
ri_290发布了新的文献求助10
5秒前
6秒前
6秒前
赘婿应助咩咩咩采纳,获得30
7秒前
王w应助诚心文博采纳,获得30
7秒前
8秒前
龙卷风摧毁停车场完成签到,获得积分10
8秒前
一指墨发布了新的文献求助10
9秒前
科目三应助唐俊杰采纳,获得10
9秒前
cc应助方方方方方采纳,获得50
9秒前
夏沫完成签到,获得积分10
9秒前
10秒前
sherry发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
乐乐应助yunshui采纳,获得10
12秒前
HSY完成签到,获得积分10
12秒前
wanci应助BeautyZ采纳,获得10
13秒前
14秒前
14秒前
CodeCraft应助WeiPaiHWuFXZ采纳,获得10
14秒前
赘婿应助含蓄的大米采纳,获得10
14秒前
15秒前
15秒前
16秒前
田様应助张晓年采纳,获得10
16秒前
16秒前
一指墨完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027