已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Facial Action Unit Recognition Using Pseudo-Intensities and their Transformation

计算机科学 转化(遗传学) 面部表情 人工智能 动作(物理) 面部识别系统 面部肌肉 国家(计算机科学) 模式识别(心理学) 面子(社会学概念) 图像(数学) 语音识别 算法 心理学 物理 沟通 社会学 基因 量子力学 化学 生物化学 社会科学
作者
Junya Saito,Takahisa Yamamoto,Akiyoshi Uchida,Xiaoyu Mi,Kentaro Murase
标识
DOI:10.1109/fg52635.2021.9666995
摘要

Facial action units (AUs) represent facial muscular activities, and our emotions can be expressed through their combinations. Thus, AU recognition is often used in many different applications, including marketing, healthcare, and education. Numerous studies have been conducted on recognizing AUs through several network architectures; however, their performances remain unsatisfactory. One of the difficulties comes from the lack of information regarding a neutral state (i.e., no facial muscular activities) of each person owing to the individuality of a neutral state. This lack of information degrades the recognition performance because the intensities of AUs are derived from a neutral state. In this paper, we propose a novel method using Pseudo-INtensities and their Transformation (PINT) to tackle this problem. To exclude the individuality of a neutral state and accurately capture the changes in facial appearance regarding AUs, we first calculate pseudo-intensities based only on the differences among the intensity states of the same person. We utilize a siamese network architecture and the facial image pairs of the same person to calculate the pseudo-intensities. These pseudo-intensities are then transformed into the actual intensities based on the low pseudo-intensities of the same person, which are considered to correspond to neutral states. We carried out evaluation experiments using two public datasets and found that our method, PINT, achieved a state-of-art performance. The improvements in the average intra-class correlation coefficient score over existing methods were 7.1% on DISFA dataset and 3.1% on FERA2017 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huangshoukun发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
3秒前
俊逸的念寒完成签到,获得积分10
3秒前
原子格致完成签到,获得积分10
5秒前
6秒前
斯文败类应助Cindy采纳,获得10
9秒前
kali完成签到 ,获得积分10
11秒前
Pan发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
CipherSage应助Jnscal采纳,获得10
15秒前
我是老大应助苻谷丝采纳,获得10
15秒前
16秒前
18秒前
隐形曼青应助工诩采纳,获得10
18秒前
xuexin完成签到,获得积分20
18秒前
美满的中蓝完成签到,获得积分10
19秒前
19秒前
科研通AI2S应助Fishchips采纳,获得10
20秒前
Pengh完成签到,获得积分10
20秒前
苯二氮卓发布了新的文献求助10
21秒前
栗惠发布了新的文献求助10
23秒前
xuexin发布了新的文献求助10
24秒前
华仔应助王王采纳,获得10
25秒前
Miriammmmm发布了新的文献求助30
26秒前
27秒前
28秒前
29秒前
Hoolyshit发布了新的文献求助10
29秒前
英姑应助Arilus采纳,获得10
29秒前
32秒前
儒雅香彤完成签到 ,获得积分10
32秒前
无花果应助ddddd11采纳,获得10
32秒前
121发布了新的文献求助10
33秒前
微熏的羊发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407380
求助须知:如何正确求助?哪些是违规求助? 4524989
关于积分的说明 14100518
捐赠科研通 4438717
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428447
关于科研通互助平台的介绍 1406479