Facial Action Unit Recognition Using Pseudo-Intensities and their Transformation

计算机科学 转化(遗传学) 面部表情 人工智能 动作(物理) 面部识别系统 面部肌肉 国家(计算机科学) 模式识别(心理学) 面子(社会学概念) 图像(数学) 语音识别 算法 心理学 物理 沟通 社会学 基因 量子力学 化学 生物化学 社会科学
作者
Junya Saito,Takahisa Yamamoto,Akiyoshi Uchida,Xiaoyu Mi,Kentaro Murase
标识
DOI:10.1109/fg52635.2021.9666995
摘要

Facial action units (AUs) represent facial muscular activities, and our emotions can be expressed through their combinations. Thus, AU recognition is often used in many different applications, including marketing, healthcare, and education. Numerous studies have been conducted on recognizing AUs through several network architectures; however, their performances remain unsatisfactory. One of the difficulties comes from the lack of information regarding a neutral state (i.e., no facial muscular activities) of each person owing to the individuality of a neutral state. This lack of information degrades the recognition performance because the intensities of AUs are derived from a neutral state. In this paper, we propose a novel method using Pseudo-INtensities and their Transformation (PINT) to tackle this problem. To exclude the individuality of a neutral state and accurately capture the changes in facial appearance regarding AUs, we first calculate pseudo-intensities based only on the differences among the intensity states of the same person. We utilize a siamese network architecture and the facial image pairs of the same person to calculate the pseudo-intensities. These pseudo-intensities are then transformed into the actual intensities based on the low pseudo-intensities of the same person, which are considered to correspond to neutral states. We carried out evaluation experiments using two public datasets and found that our method, PINT, achieved a state-of-art performance. The improvements in the average intra-class correlation coefficient score over existing methods were 7.1% on DISFA dataset and 3.1% on FERA2017 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯洁发布了新的文献求助20
2秒前
贾方硕发布了新的文献求助10
2秒前
huiZ完成签到 ,获得积分10
4秒前
4秒前
messyknots完成签到,获得积分10
6秒前
7秒前
hins应助22x采纳,获得20
7秒前
英俊的铭应助niripsa采纳,获得30
9秒前
快乐滑板应助song采纳,获得10
9秒前
欢喜发卡完成签到,获得积分10
10秒前
HongY完成签到,获得积分10
11秒前
11秒前
SciGPT应助热情笑旋采纳,获得10
12秒前
12秒前
耶zyf完成签到,获得积分10
13秒前
义气的元绿完成签到,获得积分10
16秒前
16秒前
16秒前
Fn发布了新的文献求助10
17秒前
wubobo完成签到,获得积分10
18秒前
稳重紫蓝完成签到 ,获得积分10
19秒前
cy发布了新的文献求助10
19秒前
出头天完成签到,获得积分10
20秒前
时尚铁身完成签到 ,获得积分10
20秒前
libo1991发布了新的文献求助10
21秒前
22秒前
24秒前
24秒前
26秒前
Crystal_hu关注了科研通微信公众号
28秒前
orixero应助Water103采纳,获得10
28秒前
张张发布了新的文献求助10
28秒前
29秒前
30秒前
nickberry发布了新的文献求助10
31秒前
隐形桐应助xiewuhua采纳,获得50
32秒前
33秒前
paperSCI发布了新的文献求助20
36秒前
niripsa完成签到,获得积分10
36秒前
37秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416105
求助须知:如何正确求助?哪些是违规求助? 3017776
关于积分的说明 8882583
捐赠科研通 2705363
什么是DOI,文献DOI怎么找? 1483501
科研通“疑难数据库(出版商)”最低求助积分说明 685751
邀请新用户注册赠送积分活动 680795