Facial Action Unit Recognition Using Pseudo-Intensities and their Transformation

计算机科学 转化(遗传学) 面部表情 人工智能 动作(物理) 面部识别系统 面部肌肉 国家(计算机科学) 模式识别(心理学) 面子(社会学概念) 图像(数学) 语音识别 算法 心理学 物理 沟通 社会学 基因 量子力学 化学 生物化学 社会科学
作者
Junya Saito,Takahisa Yamamoto,Akiyoshi Uchida,Xiaoyu Mi,Kentaro Murase
标识
DOI:10.1109/fg52635.2021.9666995
摘要

Facial action units (AUs) represent facial muscular activities, and our emotions can be expressed through their combinations. Thus, AU recognition is often used in many different applications, including marketing, healthcare, and education. Numerous studies have been conducted on recognizing AUs through several network architectures; however, their performances remain unsatisfactory. One of the difficulties comes from the lack of information regarding a neutral state (i.e., no facial muscular activities) of each person owing to the individuality of a neutral state. This lack of information degrades the recognition performance because the intensities of AUs are derived from a neutral state. In this paper, we propose a novel method using Pseudo-INtensities and their Transformation (PINT) to tackle this problem. To exclude the individuality of a neutral state and accurately capture the changes in facial appearance regarding AUs, we first calculate pseudo-intensities based only on the differences among the intensity states of the same person. We utilize a siamese network architecture and the facial image pairs of the same person to calculate the pseudo-intensities. These pseudo-intensities are then transformed into the actual intensities based on the low pseudo-intensities of the same person, which are considered to correspond to neutral states. We carried out evaluation experiments using two public datasets and found that our method, PINT, achieved a state-of-art performance. The improvements in the average intra-class correlation coefficient score over existing methods were 7.1% on DISFA dataset and 3.1% on FERA2017 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Wendy发布了新的文献求助10
2秒前
NexusExplorer应助Wayne采纳,获得10
3秒前
芋泥完成签到,获得积分10
3秒前
3秒前
4秒前
6秒前
野生菜狗发布了新的文献求助10
6秒前
8秒前
李忆梦关注了科研通微信公众号
8秒前
123b发布了新的文献求助10
9秒前
内向如松发布了新的文献求助20
10秒前
10秒前
10秒前
joruruo完成签到,获得积分10
12秒前
12秒前
13秒前
wanghao发布了新的文献求助10
13秒前
YaRu完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
15秒前
livialiu发布了新的文献求助10
15秒前
15秒前
spc68应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得30
16秒前
陆吉发布了新的文献求助10
16秒前
16秒前
无极微光应助科研通管家采纳,获得20
16秒前
巧克李发布了新的文献求助10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
隐形曼青应助小饼干采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577266
求助须知:如何正确求助?哪些是违规求助? 4662538
关于积分的说明 14742003
捐赠科研通 4603139
什么是DOI,文献DOI怎么找? 2526153
邀请新用户注册赠送积分活动 1496028
关于科研通互助平台的介绍 1465499