Soft clustering of retired lithium-ion batteries for the secondary utilization using Gaussian mixture model based on electrochemical impedance spectroscopy

聚类分析 介电谱 分类 计算机科学 混合模型 锂(药物) 高斯分布 一致性(知识库) 电池(电) 模式识别(心理学) 材料科学 生物系统 人工智能 电化学 电极 算法 化学 物理 物理化学 功率(物理) 计算化学 内分泌学 生物 医学 量子力学
作者
Xin Lai,Cong Deng,Xiaopeng Tang,Furong Gao,Xuebing Han,Yuejiu Zheng
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:339: 130786-130786 被引量:57
标识
DOI:10.1016/j.jclepro.2022.130786
摘要

Rapid sorting and reasonable regrouping of retired lithium-ion batteries (LIBs) are directly related to the economy and safety of the second-life utilization. However, the efficiency and accuracy of sorting for the retired LIBs needs to be further improved, and the regrouping method is still in the exploratory stage. In this study, a soft clustering method based on the Gaussian mixture model (GMM) using electrochemical impedance spectroscopy (EIS) is proposed to address these issues. In this method, the multi-dimensional clustering criteria are extracted from EIS, and the capacity is quickly estimated based on the EIS using a neural network. Furthermore, the ageing factors of six criteria are constructed to realize the soft clustering of retired cells corresponding to three ageing modes. The simulation results show that it only takes about 10 min to obtain the capacity of each cell, and the error is within 4%. Moreover, the clustering probability of each cell under different ageing modes is obtained using GMM, which is useful for flexible grouping of cells. Finally, the proposed methods are evaluated by experiments, and results show that the consistency of the regrouped cells using the proposed soft-clustering method is nearly doubled than that of the random regrouped cells. • A capacity-EIS model is built to shorten capacity test time of cells by ten times. • A multi-dimensional sorting criterion based on DRT is established. • A soft clustering method is established to flexibly regroup the retired cells. • Three ageing models are considered in clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
紫色奶萨完成签到,获得积分10
3秒前
李安全完成签到,获得积分10
3秒前
3秒前
Strongly完成签到,获得积分10
5秒前
nannan发布了新的文献求助10
6秒前
7秒前
丘比特应助水流众生采纳,获得10
7秒前
7秒前
Melody发布了新的文献求助10
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
老老实实好好活着完成签到,获得积分10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
MchemG应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
czh应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
星辰大海应助科研通管家采纳,获得30
8秒前
8秒前
MchemG应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
SiDi发布了新的文献求助10
11秒前
13秒前
13秒前
英俊的铭应助SiDi采纳,获得10
14秒前
14秒前
小旭vip完成签到 ,获得积分10
16秒前
frl发布了新的文献求助10
17秒前
jtyuan发布了新的文献求助10
17秒前
热心市民小红花应助朝颜采纳,获得10
17秒前
FashionBoy应助朝颜采纳,获得10
18秒前
十一发布了新的文献求助10
18秒前
18秒前
qcf完成签到 ,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068