Soft clustering of retired lithium-ion batteries for the secondary utilization using Gaussian mixture model based on electrochemical impedance spectroscopy

聚类分析 介电谱 分类 计算机科学 混合模型 锂(药物) 高斯分布 一致性(知识库) 电池(电) 模式识别(心理学) 材料科学 生物系统 人工智能 电化学 电极 算法 化学 物理 物理化学 功率(物理) 计算化学 内分泌学 生物 医学 量子力学
作者
Xin Lai,Cong Deng,Xiaopeng Tang,Furong Gao,Xuebing Han,Yuejiu Zheng
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:339: 130786-130786 被引量:57
标识
DOI:10.1016/j.jclepro.2022.130786
摘要

Rapid sorting and reasonable regrouping of retired lithium-ion batteries (LIBs) are directly related to the economy and safety of the second-life utilization. However, the efficiency and accuracy of sorting for the retired LIBs needs to be further improved, and the regrouping method is still in the exploratory stage. In this study, a soft clustering method based on the Gaussian mixture model (GMM) using electrochemical impedance spectroscopy (EIS) is proposed to address these issues. In this method, the multi-dimensional clustering criteria are extracted from EIS, and the capacity is quickly estimated based on the EIS using a neural network. Furthermore, the ageing factors of six criteria are constructed to realize the soft clustering of retired cells corresponding to three ageing modes. The simulation results show that it only takes about 10 min to obtain the capacity of each cell, and the error is within 4%. Moreover, the clustering probability of each cell under different ageing modes is obtained using GMM, which is useful for flexible grouping of cells. Finally, the proposed methods are evaluated by experiments, and results show that the consistency of the regrouped cells using the proposed soft-clustering method is nearly doubled than that of the random regrouped cells. • A capacity-EIS model is built to shorten capacity test time of cells by ten times. • A multi-dimensional sorting criterion based on DRT is established. • A soft clustering method is established to flexibly regroup the retired cells. • Three ageing models are considered in clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
科研通AI5应助jingxian采纳,获得10
2秒前
lukawa发布了新的文献求助10
2秒前
yarazhang发布了新的文献求助10
3秒前
zhangkexin发布了新的文献求助10
3秒前
4秒前
4秒前
重要无招发布了新的文献求助10
6秒前
9秒前
9秒前
辛夷发布了新的文献求助10
10秒前
充电宝应助来来采纳,获得10
10秒前
重要无招完成签到,获得积分10
10秒前
Hanson完成签到,获得积分10
11秒前
12秒前
zhangkexin完成签到,获得积分10
12秒前
cndxh完成签到 ,获得积分10
13秒前
13秒前
13秒前
Akim应助哭泣的金鱼采纳,获得10
13秒前
合适橘完成签到,获得积分10
14秒前
聪明山芙完成签到,获得积分10
14秒前
慵懒芙芙完成签到 ,获得积分10
14秒前
jinmuna发布了新的文献求助20
14秒前
基金中中中完成签到,获得积分10
15秒前
15秒前
沈万熙发布了新的文献求助10
16秒前
乐乐发布了新的文献求助10
18秒前
19秒前
绵羊座鸭梨完成签到 ,获得积分10
20秒前
jingxian发布了新的文献求助10
23秒前
24秒前
深情安青应助斯文念波采纳,获得10
25秒前
充电宝应助清仔采纳,获得10
27秒前
bkagyin应助乐乐采纳,获得10
27秒前
lili完成签到 ,获得积分10
27秒前
28秒前
一一yi完成签到,获得积分10
29秒前
金鱼完成签到,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176