Soft clustering of retired lithium-ion batteries for the secondary utilization using Gaussian mixture model based on electrochemical impedance spectroscopy

聚类分析 介电谱 分类 计算机科学 混合模型 锂(药物) 高斯分布 一致性(知识库) 电池(电) 模式识别(心理学) 材料科学 生物系统 人工智能 电化学 电极 算法 化学 物理 物理化学 功率(物理) 计算化学 内分泌学 生物 医学 量子力学
作者
Xin Lai,Cong Deng,Xiaopeng Tang,Furong Gao,Xuebing Han,Yuejiu Zheng
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:339: 130786-130786 被引量:65
标识
DOI:10.1016/j.jclepro.2022.130786
摘要

Rapid sorting and reasonable regrouping of retired lithium-ion batteries (LIBs) are directly related to the economy and safety of the second-life utilization. However, the efficiency and accuracy of sorting for the retired LIBs needs to be further improved, and the regrouping method is still in the exploratory stage. In this study, a soft clustering method based on the Gaussian mixture model (GMM) using electrochemical impedance spectroscopy (EIS) is proposed to address these issues. In this method, the multi-dimensional clustering criteria are extracted from EIS, and the capacity is quickly estimated based on the EIS using a neural network. Furthermore, the ageing factors of six criteria are constructed to realize the soft clustering of retired cells corresponding to three ageing modes. The simulation results show that it only takes about 10 min to obtain the capacity of each cell, and the error is within 4%. Moreover, the clustering probability of each cell under different ageing modes is obtained using GMM, which is useful for flexible grouping of cells. Finally, the proposed methods are evaluated by experiments, and results show that the consistency of the regrouped cells using the proposed soft-clustering method is nearly doubled than that of the random regrouped cells. • A capacity-EIS model is built to shorten capacity test time of cells by ten times. • A multi-dimensional sorting criterion based on DRT is established. • A soft clustering method is established to flexibly regroup the retired cells. • Three ageing models are considered in clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
355464328完成签到,获得积分10
刚刚
1秒前
Doctor_Mill完成签到,获得积分10
1秒前
2秒前
zzz发布了新的文献求助10
3秒前
3秒前
害羞映容发布了新的文献求助10
3秒前
瑜軒完成签到,获得积分10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
简单海露发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
甜甜玫瑰应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
6秒前
大个应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
侯大伟发布了新的文献求助10
7秒前
TNT应助科研通管家采纳,获得10
7秒前
Meyako应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
123455完成签到,获得积分20
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
甜甜玫瑰应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
小远发布了新的文献求助10
8秒前
9秒前
竹筏过海应助Q_Q采纳,获得30
11秒前
科研通AI5应助zz采纳,获得10
11秒前
zzzzzzzqy发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633044
求助须知:如何正确求助?哪些是违规求助? 4029172
关于积分的说明 12466463
捐赠科研通 3715416
什么是DOI,文献DOI怎么找? 2050092
邀请新用户注册赠送积分活动 1081655
科研通“疑难数据库(出版商)”最低求助积分说明 963994