可解释性
计算机科学
人工智能
子空间拓扑
深度学习
聚类分析
图形
自编码
又称作
机器学习
特征(语言学)
模式识别(心理学)
算法
理论计算机科学
哲学
语言学
图书馆学
摘要
Single-cell RNA sequencing (scRNA-seq) measures gene transcriptome at the cell level, paving the way for the identification of cell subpopulations. Although deep learning has been successfully applied to scRNA-seq data, these algorithms are criticized for the undesirable performance and interpretability of patterns because of the noises, high-dimensionality and extraordinary sparsity of scRNA-seq data. To address these issues, a novel deep learning subspace clustering algorithm (aka scGDC) for cell types in scRNA-seq data is proposed, which simultaneously learns the deep features and topological structure of cells. Specifically, scGDC extends auto-encoder by introducing a self-representation layer to extract deep features of cells, and learns affinity graph of cells, which provide a better and more comprehensive strategy to characterize structure of cell types. To address heterogeneity of scRNA-seq data, scGDC projects cells of various types onto different subspaces, where types, particularly rare cell types, are well discriminated by utilizing generative adversarial learning. Furthermore, scGDC joins deep feature extraction, structural learning and cell type discovery, where features of cells are extracted under the guidance of cell types, thereby improving performance of algorithms. A total of 15 scRNA-seq datasets from various tissues and organisms with the number of cells ranging from 56 to 63 103 are adopted to validate performance of algorithms, and experimental results demonstrate that scGDC significantly outperforms 14 state-of-the-art methods in terms of various measurements (on average 25.51% by improvement), where (rare) cell types are significantly associated with topology of affinity graph of cells. The proposed model and algorithm provide an effective strategy for the analysis of scRNA-seq data (The software is coded using python, and is freely available for academic https://github.com/xkmaxidian/scGDC).
科研通智能强力驱动
Strongly Powered by AbleSci AI