SPLDExtraTrees: robust machine learning approach for predicting kinase inhibitor resistance

过度拟合 机器学习 人工智能 计算机科学 突变 生物 人工神经网络 遗传学 基因
作者
Ziyi Yang,Zhaofeng Ye,Yijia Xiao,Chang-Yu Hsieh,Sheng-Yu Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:4
标识
DOI:10.1093/bib/bbac050
摘要

Drug resistance is a major threat to the global health and a significant concern throughout the clinical treatment of diseases and drug development. The mutation in proteins that is related to drug binding is a common cause for adaptive drug resistance. Therefore, quantitative estimations of how mutations would affect the interaction between a drug and the target protein would be of vital significance for the drug development and the clinical practice. Computational methods that rely on molecular dynamics simulations, Rosetta protocols, as well as machine learning methods have been proven to be capable of predicting ligand affinity changes upon protein mutation. However, the severely limited sample size and heavy noise induced overfitting and generalization issues have impeded wide adoption of machine learning for studying drug resistance. In this paper, we propose a robust machine learning method, termed SPLDExtraTrees, which can accurately predict ligand binding affinity changes upon protein mutation and identify resistance-causing mutations. Especially, the proposed method ranks training data following a specific scheme that starts with easy-to-learn samples and gradually incorporates harder and diverse samples into the training, and then iterates between sample weight recalculations and model updates. In addition, we calculate additional physics-based structural features to provide the machine learning model with the valuable domain knowledge on proteins for these data-limited predictive tasks. The experiments substantiate the capability of the proposed method for predicting kinase inhibitor resistance under three scenarios and achieve predictive accuracy comparable with that of molecular dynamics and Rosetta methods with much less computational costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
酷波er应助cyp采纳,获得10
6秒前
可爱的函函应助杨凡采纳,获得10
7秒前
7秒前
Nathan完成签到,获得积分10
7秒前
所所应助淡然伊采纳,获得10
8秒前
9秒前
9秒前
12秒前
中和皇极应助代小葵采纳,获得10
14秒前
beituo发布了新的文献求助10
15秒前
tongbuxiang完成签到,获得积分10
15秒前
16秒前
充电宝应助谢晋采纳,获得30
16秒前
细心灭龙发布了新的文献求助10
17秒前
chen_lin发布了新的文献求助10
18秒前
19秒前
20秒前
烟花应助科研通管家采纳,获得100
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
21秒前
cdercder应助科研通管家采纳,获得30
21秒前
duanhuiyuan应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
21秒前
duanhuiyuan应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
MingqingFang发布了新的文献求助10
21秒前
liuliu应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
fan发布了新的文献求助10
21秒前
红莲墨生发布了新的文献求助10
22秒前
YF是杨芳完成签到 ,获得积分10
22秒前
默默的井发布了新的文献求助10
23秒前
23秒前
23秒前
cyp发布了新的文献求助10
26秒前
27秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462725
求助须知:如何正确求助?哪些是违规求助? 3056239
关于积分的说明 9051164
捐赠科研通 2745868
什么是DOI,文献DOI怎么找? 1506668
科研通“疑难数据库(出版商)”最低求助积分说明 696188
邀请新用户注册赠送积分活动 695720